Calvin, K. et al. Climate change 2023: synthesis report. contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change. Tech. Rep., Intergovernmental Panel on Climate Change (IPCC, 2023). https://www.ipcc.ch/report/ar6/syr/. Edition: First.
Soroka, S. N. & Wlezien, C.Degrees of democracy: politics, public opinion, and policy (Cambridge University Press, 2010). OCLC: ocn317574169.
Anderson, B., Böhmelt, T. & Ward, H. Public opinion and environmental policy output: a cross-national analysis of energy policies in Europe. Environ. Res. Lett. 12, 114011 (2017).
McCombs, M. E., Shaw, D. L. & Weaver, D. H. New directions in agenda-setting theory and research. Mass Commun. Soc. 17, 781–802 (2014).
Maurer, M. Journalismus und Agenda-Setting. In Löffelholz, M. & Rothenberger, L. (eds.) Handbuch Journalismustheorien, 1–12 (Springer, 2022).
Barberá, P. et al. Who leads? Who follows? Measuring issue attention and agenda setting by legislators and the mass public using social media data. Am. Polit. Sci. Rev. 113, 883–901 (2019).
Valenzuela, S., Puente, S. & Flores, P. M. Comparing disaster news on Twitter and television: an intermedia agenda setting perspective. J. Broadcast. Electron. Media 61, 615–637 (2017).
Harcup, T. & O’Neill, D. What is news?: news values revisited (again). Journal. Stud. 18, 1470–1488 (2017).
Carvalho, A. Media(ted)discourses and climate change: a focus on political subjectivity and (dis)engagement. WIREs Clim. Change 1, 172–179 (2010).
Brulle, R. J., Carmichael, J. & Jenkins, J. C. Shifting public opinion on climate change: an empirical assessment of factors influencing concern over climate change in the U.S., 2002-2010. Clim. Change 114, 169–188 (2012).
Kristiansen, S., Painter, J. & Shea, M. Animal agriculture and climate change in the US and UK elite media: volume, responsibilities, causes and solutions. Environ. Commun. 15, 153–172 (2021).
Hart, P. S., Nisbet, E. C. & Myers, T. A. Public attention to science and political news and support for climate change mitigation. Nat. Clim. Change 5, 541–545 (2015).
Falkenberg, M. et al. Growing polarization around climate change on social media. Nat. Clim. Change 12, 1114–1121 (2022).
Sampei, Y. & Aoyagi-Usui, M. Mass-media coverage, its influence on public awareness of climate-change issues, and implications for Japan’s national campaign to reduce greenhouse gas emissions. Glob. Environ. Change 19, 203–212 (2009).
Jones, C., Hine, D. W. & Marks, A. D. G. The future is now: reducing psychological distance to increase public engagement with climate change. Risk Anal. 37, 331–341 (2017).
Loy, L. S. & Spence, A. Reducing, and bridging, the psychological distance of climate change. J. Environ. Psychol. 67, 101388 (2020).
Carvalho, A. & Burgess, J. Cultural circuits of climate change in U.K. broadsheet newspapers, 1985-2003. Risk Anal. 25, 1457–1469 (2005).
Maibach, E. W., Nisbet, M., Baldwin, P., Akerlof, K. & Diao, G. Reframing climate change as a public health issue: an exploratory study of public reactions. BMC Public Health 10, 299 (2010).
Myers, T. A., Nisbet, M. C., Maibach, E. W. & Leiserowitz, A. A. A public health frame arouses hopeful emotions about climate change: a letter. Clim. Change 113, 1105–1112 (2012).
Beattie, G. Measuring Social Benefits of Media Coverage: How Coverage of Climate Change Affects Behaviour. The Economic Journal 135, 455–486 (2024).
Meinerding, C., Schüler, Y. S. & Zhang, P. Shocks to transition risk. SSRN Elect. J. (2023).
Campos-Martins, S. & Hendry, D. F. Common volatility shocks driven by the global carbon transition. J. Econ. 239, 105472 (2024).
Intergovernmental Panel On Climate Change (IPCC). Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 1st ed. (Cambridge University Press, 2023).
Comfort, S. E. & Park, Y. E. On the field of environmental communication: a systematic review of the peer-reviewed literature. Environ. Commun. 12, 862–875 (2018).
Schäfer, M. S., Ivanova, A. & Schmidt, A. What drives media attention for climate change? Explaining issue attention in Australian, German and Indian print media from 1996 to 2010. Int. Commun. Gaz. 76, 152–176 (2014).
Hase, V., Mahl, D., Schäfer, M. S. & Keller, T. R. Climate change in news media across the globe: an automated analysis of issue attention and themes in climate change coverage in 10 countries (2006-2018). Glob. Environ. Change 70, 102353 (2021).
Lochner, J. H., Stechemesser, A. & Wenz, L. Climate summits and protests have a strong impact on climate change media coverage in Germany. Commun. Earth Environ. 5, 279 (2024).
Wozniak, A., Wessler, H., Chan, C.-h. & Lück, J. The event-centered nature of global public spheres: the UN climate change conferences, fridays for future, and the (limited) transnationalization of media debates. Int. J. Commun. 15, 27 (2021).
Siyao, P. O. & Sife, A. S. Prominence of occurrence accorded to climate change information in Tanzanian newspapers. Alex.: J. Natl Int. Libr. Inf. Issues 30, 54–71 (2020).
Ejaz, W., Mukherjee, M. & Fletcher, R. Climate change news audiences: analysis of news use and attitudes in eight countries. Tech. Rep., [object Object] (Oxford University, 2023).
Ejaz, W., Mukherjee, M. & Fletcher, R. Climate change and news audiences report 2024: analysis of news use and attitudes in eight countries. Tech. Rep. (Reuters Institute for the Study of Journalism, 2025).
Newman, N., Fletcher, R., Schulz, A., Andí, S. & Kleis Nielsen, R. Reuters Institute Digital News Report 2020. Tech. Rep. (Reuters Institute for the Study of Journalism, 2020).
Evans, S. Analysis: Which countries are historically responsible for climate change. https://www.carbonbrief.org/analysis-which-countries-are-historically-responsible-for-climate-change/ (2021).
Darmsatdt, C. N. Die Klimaberichterstattung der Tagesschau in Zeiten multipler Krisen. Master’s thesis (University of Greifswald, 2023).
Zubayr, C., Haddad, D. & Thomas Kupferschmitt. Tendenzen im Zuschauerverhalten – Nutzungsgewohnheiten und Reichweiten im Jahr 2023. MediaPerspektiven 1–17 (2024). https://www.ard-media.de/fileadmin/user_upload/media-perspektiven/pdf/2024/MP_11_2024_Tendenzen_im_Zuschauerverhalten_2023.pdf.
McAllister, L., Vedula, S., Pu, W. & Boykoff, M. Vulnerable voices: using topic modeling to analyze newspaper coverage of climate change in 26 non-Annex I countries (2010-2020). Environ. Res. Lett. 19, 024046 (2024).
Tagesschau. Häufige Fragen zur tagesschau: Wie wird die Reihenfolge der Meldungen festgelegt? https://www.tagesschau.de/ueber-uns (2023).
Grootendorst, M. BERTopic: Neural topic modeling with a class-based TF-IDF procedure. Preprint at https://doi.org/10.48550/ARXIV.2203.05794 (2022).
Vu, H. T., Liu, Y. & Tran, D. V. Nationalizing a global phenomenon: a study of how the press in 45 countries and territories portrays climate change. Glob. Environ. Change 58, 101942 (2019).
Keller, T. R., Hase, V., Thaker, J., Mahl, D. & Schäfer, M. S. News media coverage of climate change in India 1997-2016: using automated content analysis to assess themes and topics. Environ. Commun. 14, 219–235 (2020).
Ejaz, W., Ittefaq, M. & Jamil, S. Politics triumphs: a topic modeling approach of analyzing news media coverage of climate change in Pakistan. J. Sci. Commun. 22, A02 (2023).
Bohr, J. “Reporting on climate change: a computational analysis of U.S. newspapers and sources of bias, 1997-2017”. Glob. Environ. Change 61, 102038 (2020).
Dehler-Holland, J., Schumacher, K. & Fichtner, W. Topic modeling uncovers shifts in media framing of the german renewable energy act. Patterns 2, 100169 (2021).
Blei, D. M. Probabilistic topic models. Commun. ACM 55, 77–84 (2012).
Zhao, H. et al. Topic modelling meets deep neural networks: a survey Corr. 2103, 4713–4720 (2021).
Wu, X., Nguyen, T. & Luu, A. T. A survey on neural topic models: methods, applications, and challenges. Artif. Intell. Rev. 57, 18 (2024).
Umamaheswaran, S., Dar, V., Sharma, E. & Kurian, J. S. Mapping climate themes from 2008-2021-an analysis of business news using topic models. IEEE Access 11, 26554–26565 (2023).
Fedorova, E. & Iasakova, P. The impact of climate change news on the US stock market. J. Risk Financ. 25, 293–320 (2024).
Li, C. Primacy effect or recency effect? A long-term memory test of the 2006 super bowl commercials. In Sharma, D. & Borna, S. (eds.) In Proc. Academy of Marketing Science Annual Conference, 4–4 (Springer International Publishing, 2015).
Holbert, R. L., Lambe, J. L., Dudo, A. D. & Carlton, K. A. Primacy effects of the daily show and national TV news viewing: young viewers, political gratifications, and internal political self-efficacy. J. Broadcast. Electron. Media 51, 20–38 (2007).
Neverla, I. & Hoppe, I. Klimawandel und Biodiversität: was zeigt das Fernsehen – Was wollen die Zuschauer*innen? (2023).
Wöhrer, A. & Jungblut, M. Sportarten im Aufstiegskampf? Eine Analyse der Vielfältigkeit und der Struktur der sportjournalistischen Berichterstattung der Tagesschau. Medien Kommunikationswissenschaft 70, 404–422 (2022).
Moore, F. C., Obradovich, N., Lehner, F. & Baylis, P. Rapidly declining remarkability of temperature anomalies may obscure public perception of climate change. Proc. Natl. Acad. Sci. USA 116, 4905–4910 (2019).
Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).
Kotz, M., Levermann, A. & Wenz, L. The economic commitment of climate change. Nature 628, 551–557 (2024).
Thompson, R. et al. Ambient temperature and mental health: a systematic review and meta-analysis. Lancet Planet. Health 7, e580–e589 (2023).
Stechemesser, A., Levermann, A. & Wenz, L. Temperature impacts on hate speech online: evidence from 4 billion geolocated tweets from the USA. Lancet Planet. Health 6, e714–e725 (2022).
Intergovernmental Panel On Climate Change (IPCC) (ed.) Climate Change 2022 – Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 1st ed, (Cambridge University Press, 2023).
Xinsheng, L., Lindquist, E. & Vedlitz, A. Explaining media and congressional attention to global climate change, 1969-2005: an empirical test of agenda-setting theory. Polit. Res. Q. 64, 405–419 (2011).
Tschötschel, R., Schumann, N., Roloff, R. & Brüggemann, M. Der Klimawandel im öffentlich-rechtlichen Fernsehen: Inhaltsanalyse der “Tagesschau” und des Gesamtprogramms von Das Erste, ZDF und WDR 2007 bis 2022. Media Perspektiven 2022, 574–581 (2022).
Maurer, T., Wagner, M. & Weiß, H.-J. Fernsehnachrichten: mehr als Klimawandel, Brexit, Europa- und Landtagswahlen, Ergebnisse des Nachrichtenmonitors 2019. Media Perspektiven 2020, 62–86 (2020).
Vreese, C. H. News framing: theory and typology. Inf. Des. J. 13, 51–62 (2005).
Schmidt, A., Ivanova, A. & Schäfer, M. S. Media attention for climate change around the world: A comparative analysis of newspaper coverage in 27 countries. Glob. Environ. Change 23, 1233–1248 (2013).
Chen, W., Rabhi, F., Liao, W. & Al-Qudah, I. Leveraging state-of-the-art topic modeling for news impact analysis on financial markets: a comparative study. Electronics 12, 2605 (2023).
Hristova, G. & Netov, N. Media Coverage and Public Perception of Distance Learning During the COVID-19 Pandemic: A Topic Modeling Approach Based on BERTopic. In 2022 IEEE International Conference on Big Data (Big Data), 2259–2264 (IEEE, 2022).
Maier, D. et al. Applying LDA topic modeling in communication research: toward a valid and reliable methodology. Commun. Methods Meas. 12, 93–118 (2018).
Schirmag, T., Wedemeyer, J. H., Stechemesser, A. & Wenz, L. Code and data for ‘Neural topic modeling reveals German television’s climate change coverage’. https://doi.org/10.5281/zenodo.13246786 (2025).
Schatz, H. “Tagesschau” und “heute” – Politisierung des Unpolitischen? In Zoll, R. (ed.) Manipulation der Meinungsbildung, 109–123 (VS Verlag für Sozialwissenschaften, Wiesbaden, 1971).
Hummelmeier, A. Was ist wichtig, was ist interessant? In Hestermann, T. (ed.) Von Lichtgestalten und Dunkelmännern, 79–86 (VS Verlag für Sozialwissenschaften, Wiesbaden, 2012).
Tagesschau. Häufige Fragen zur tagesschau: Gibt es eine Definition, wie eine ARD-aktuell-Sendung sein muss? https://www.tagesschau.de/ueber-uns (2023).
Boykoff, M. T. Lost in translation? United States television news coverage of anthropogenic climate change, 1995-2004. Clim. Change 86, 1–11 (2008).
Reimers, N. & Gurevych, I. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In Proc. Conference on Empirical Methods in Natural Language Processing (Association for Computational Linguistics, 2019).
Bender, E. M., Gebru, T., McMillan-Major, A. & Shmitchell, S. On the dangers of stochastic parrots: can language models be too big? In Proc. ACM Conference on Fairness, Accountability, and Transparency, 610–623 (ACM, 2021).
Grootendorst, M. Tips & Tricks: Document Length (v0.16.4). https://maartengr.github.io/BERTopic/getting_started/tips_and_tricks/tips_and_tricks.html.
Aggarwal, C. C., Hinneburg, A. & Keim, D. A. On the surprising behavior of distance metrics in high-dimensional space. In Goos, G., Hartmanis, J., Van Leeuwen, J., Van Den Bussche, J. & Vianu, V. (eds.) Database Theory – ICDT 2001, vol. 1973, 420–434 (2001).
Carbonell, J. & Goldstein, J. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In Proc. 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 335–336 (ACM, 1998).
Ward, J. H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).
Abdelrazek, A., Eid, Y., Gawish, E., Medhat, W. & Hassan, A. Topic modeling algorithms and applications: a survey. Inf. Syst. 112, 102131 (2023).
Yanich, D. Local Tv news, content, and the bottom line. J. Urban Aff. 35, 327–342 (2013).
Montani, I. et al. explosion/spaCy: v3.7.2: Fixes for APIs and requirements (2023).