Drent, M., Crouser, E. D. & Grunewald, J. Challenges of sarcoidosis and its management. N. Engl. J. Med. 385, 1018–1032 (2021).
Arkema, E. V. & Cozier, Y. C. Sarcoidosis epidemiology: recent estimates of incidence, prevalence and risk factors. Curr. Opin. Pulm Med. 26, 527–534 (2020).
Arkema, E. V., Grunewald, J., Kullberg, S., Eklund, A. & Askling, J. Sarcoidosis incidence and prevalence: a nationwide register-based assessment in Sweden. Eur. Respir. J. 48, 1690–1699 (2016).
Sikjær, M. G., Hilberg, O., Ibsen, R. & Løkke, A. Sarcoidosis: A nationwide registry-based study of incidence, prevalence and diagnostic work-up. Respir. Med. 187, 106548 (2021).
Fidler, L. M. et al. Epidemiology and health outcomes of sarcoidosis in a universal healthcare population: a cohort study. Eur. Respir. J. 54, 1900444 (2019).
Ungprasert, P., Crowson, C. S. & Matteson, E. L. Risk of cardiovascular disease among patients with sarcoidosis: a population-based retrospective cohort study, 1976-2013. Eur. Respir. J. 49, 1601290 (2017).
Bonifazi, M. et al. Sarcoidosis and cancer risk: systematic review and meta-analysis of observational studies. Chest 147, 778–791 (2015).
Arkema, E. V. & Cozier, Y. C. Epidemiology of sarcoidosis: current findings and future directions. Ther. Adv. Chronic. Dis. 9, 227–240 (2018).
McGrath, D. S. et al. Epidemiology of familial sarcoidosis in the UK. Thorax 55, 751–754 (2000).
Calender, A., Weichhart, T., Valeyre, D. & Pacheco, Y. Current insights in genetics of sarcoidosis: functional and clinical impacts. J. Clin. Med. 9, 2633 (2020).
Liao, S.-Y. et al. Genome-wide association study identifies multiple HLA loci for sarcoidosis susceptibility. Hum. Mol. Genet. 32, 2669–2678 (2023).
Rivera, N. V. et al. High-density genetic mapping identifies new susceptibility variants in sarcoidosis phenotypes and shows genomic-driven phenotypic differences. Am. J. Respir. Crit. Care Med. 193, 1008–1022 (2016).
Adrianto, I. et al. Genome-wide association study of African and European Americans implicates multiple shared and ethnic specific loci in sarcoidosis susceptibility. PLoS ONE7, e43907 (2012).
Hofmann, S. et al. Genome-wide association study identifies ANXA11 as a new susceptibility locus for sarcoidosis. Nat. Genet 40, 1103–1106 (2008).
Fischer, A. et al. A novel sarcoidosis risk locus for Europeans on chromosome 11q13.1. Am. J. Respir. Crit. Care Med. 186, 877–885 (2012).
Fischer, A. et al. Identification of immune-relevant factors conferring sarcoidosis genetic risk. Am. J. Respir. Crit. Care Med. 192, 727–736 (2015).
Meguro, A. et al. Genetic control of CCL24, POR, and IL23R contributes to the pathogenesis of sarcoidosis. Commun. Biol. 3, 465 (2020).
Meguro, A. et al. Genetic control of CCL24, POR, and IL23R contributes to the pathogenesis of sarcoidosis. Commun. Biol. 3, 1–10 (2020).
Xiong, Y. et al. Sex differences in the genetics of sarcoidosis across European and African ancestry populations. Front Med. (Lausanne) 10, 1132799 (2023).
Lawlor, D. A., Harbord, R. M., Sterne, J. A. C., Timpson, N. & Davey Smith, G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat. Med. 27, 1133–1163 (2008).
Yuan, S. & Larsson, S. C. An atlas on risk factors for type 2 diabetes: a wide-angled Mendelian randomisation study. Diabetologia 63, 2359–2371 (2020).
Yuan, S. et al. Plasma proteins and onset of type 2 diabetes and diabetic complications: proteome-wide Mendelian randomization and colocalization analyses. Cell Rep. Med. 4, 101174 (2023).
Rossides, M., Darlington, P., Kullberg, S. & Arkema, E. V. Sarcoidosis: Epidemiology and clinical insights. J. Intern. Med. 293, 668–680 (2023).
Maver, A. et al. Peroxisome proliferator-activated receptor gamma/Pro12Ala polymorphism and peroxisome proliferator-activated receptor gamma coactivator-1 alpha/Gly482Ser polymorphism in patients with sarcoidosis. Sarcoidosis. Vasc. Diffuse Lung Dis. 25, 29–35 (2008).
Hofmann, S. et al. Genome-wide association analysis reveals 12q13.3-q14.1 as new risk locus for sarcoidosis. Eur. Respir. J. 41, 888–900 (2013).
Kennedy, J. M. et al. CCDC88B is a novel regulator of maturation and effector functions of T cells during pathological inflammation. J. Exp. Med. 211, 2519–2535 (2014).
Olivier, J.-F. et al. CCDC88B interacts with RASAL3 and ARHGEF2 and regulates dendritic cell function in neuroinflammation and colitis. Commun. Biol. 7, 1–19 (2024).
Yuan, S. et al. Mendelian randomization and clinical trial evidence supports TYK2 inhibition as a therapeutic target for autoimmune diseases. EBioMedicine 89, 104488 (2023).
Zhao, S. S., Barton, A. & Bowes, J. Genetically proxied TYK2 inhibition is associated with reduced sarcoidosis susceptibility. Ann. Rheum. Dis. 82, 445–446 (2023).
Damsky, W. et al. Janus kinase inhibition induces disease remission in cutaneous sarcoidosis and granuloma annulare. J. Am. Acad. Dermatol. 82, 612–621 (2020).
Kerner, G. et al. Homozygosity for TYK2 P1104A underlies tuberculosis in about 1% of patients in a cohort of European ancestry. Proc. Natl. Acad. Sci. USA 116, 10430–10434 (2019).
Haverkamp, M. H., van de Vosse, E. & van Dissel, J. T. Nontuberculous mycobacterial infections in children with inborn errors of the immune system. J. Infect. 68, S134–S150 (2014).
Pellenz, F. M. et al. Association of TYK2 polymorphisms with autoimmune diseases: a comprehensive and updated systematic review with meta-analysis. Genet. Mol. Biol. 44, e20200425 (2021).
Gerke, A. K. Treatment of sarcoidosis: a multidisciplinary approach. Front. Immunol. 11, 545413(2020).
Cozier, Y. C. et al. Obesity and weight gain in relation to incidence of sarcoidosis in US black women: data from the black women’s health study. Chest 147, 1086–1093 (2015).
Dumas, O., Boggs, K. M., Cozier, Y. C., Stampfer, M. J. & Camargo, C. A. Prospective study of body mass index and risk of sarcoidosis in US women. Eur. Respir. J. 50, 1701397 (2017).
Judson, M. A., Tiwari, A. & Gemoets, D. E. The relationship of obesity and OSA to the development of sarcoidosis: a large retrospective case-control US veterans administration analysis. Chest 162, 1086–1092 (2022).
Dehara, M., Sachs, M. C., Grunewald, J., Blomberg, A. & Arkema, E. V. Modifiable lifestyle risk factors for sarcoidosis: a nested case-control study. ERJ. Open Res. 9, 00492–02022 (2023).
Ramos-Casals, M. et al. Clinically-useful serum biomarkers for diagnosis and prognosis of sarcoidosis. Expert Rev. Clin. Immunol. 15, 391–405 (2019).
Hutyrová, B. et al. Interleukin-1 gene cluster polymorphisms in sarcoidosis and idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 165, 148–151 (2002).
Kron, J. et al. Interleukin-1 blockade in cardiac sarcoidosis: a pilot study. Circ. Arrhythm. Electrophysiol. 16, e011869 (2023).
Nahm, M. et al. ANXA11 mutations in ALS cause dysregulation of calcium homeostasis and stress granule dynamics. Sci. Transl. Med. 12, eaax3993 (2020).
Levey, D. F. et al. Bi-ancestral depression GWAS in the million veteran program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat. Neurosci. 24, 954–963 (2021).
Sakaue, S. et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet 53, 1415–1424 (2021).
Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).
Verma, A. et al. Diversity and scale: genetic architecture of 2068 traits in the VA million veteran program. Science 385, eadj1182 (2024).
Bick, A. G. et al. Genomic data in the all of Us research program. Nature 627, 340–346 (2024).
Ani, A., van der Most, P. J., Snieder, H., Vaez, A. & Nolte, I. M. GWASinspector: comprehensive quality control of genome-wide association study results. Bioinformatics 37, 129–130 (2021).
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet 47, 291–295 (2015).
Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).
de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).
Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886–D894 (2019).
Mai, J., Lu, M., Gao, Q., Zeng, J. & Xiao, J. Transcriptome-wide association studies: recent advances in methods, applications and available databases. Commun. Biol. 6, 899 (2023).
Barbeira, A. N. et al. Integrating predicted transcriptome from multiple tissues improves association detection. PLOS Genetics 15, e1007889 (2019).
Consortium, G. T. Ex The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).
Pulit, S. L. et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum. Mol. Genet 28, 166–174 (2019).
Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet 51, 237–244 (2019).
Zhong, V. W. et al. A genome-wide association study of bitter and sweet beverage consumption. Hum. Mol. Genet 28, 2449–2457 (2019).
Wang, Z. et al. Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention. Nat. Genet 54, 1332–1344 (2022).
Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet 53, 1712–1721 (2021).
Pietzner, M. et al. Mapping the proteo-genomic convergence of human diseases. Science 374, eabj1541 (2021).
Yarmolinsky, J. et al. Association between circulating inflammatory markers and adult cancer risk: a Mendelian randomization analysis. EBioMedicine 100, 104991 (2024).
Burgess, S., Bowden, J., Fall, T., Ingelsson, E. & Thompson, S. G. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiology 28, 30–42 (2017).
Burgess, S. & Thompson, S. G. Interpreting findings from Mendelian randomization using the MR-egger method. Eur. J. Epidemiol. 32, 377–389 (2017).
Verbanck, M., Chen, C.-Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet 50, 693–698 (2018).
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet 10, e1004383 (2014).
Wallace, C. A more accurate method for colocalisation analysis allowing for multiple causal variants. PLoS Genet 17, e1009440 (2021).
