Close Menu
  • Breaking News
  • Business
  • Career
  • Sports
  • Climate
  • Science
    • Tech
  • Culture
  • Health
  • Lifestyle
  • Facebook
  • Instagram
  • TikTok
Categories
  • Breaking News (5,201)
  • Business (316)
  • Career (4,415)
  • Climate (216)
  • Culture (4,384)
  • Education (4,602)
  • Finance (211)
  • Health (864)
  • Lifestyle (4,267)
  • Science (4,290)
  • Sports (339)
  • Tech (176)
  • Uncategorized (1)
Hand Picked

OKC Thunder Guard Nikola Topic Diagnosed with Testicular Cancer

November 12, 2025

NFL news: Giants to start Jameis Winston at quarterback in Week 11

November 12, 2025

Rare meteor explosion caught on live stream

November 12, 2025

Patrick Mahomes Gets Bad Career News During Chiefs Bye Week

November 12, 2025
Facebook X (Twitter) Instagram
  • About us
  • Contact us
  • Disclaimer
  • Privacy Policy
  • Terms and services
Facebook X (Twitter) Instagram
onlyfacts24
  • Breaking News

    NFL news: Giants to start Jameis Winston at quarterback in Week 11

    November 12, 2025

    Ukraine suspends justice minister for alleged link to $100m corruption case | Nuclear Energy News

    November 12, 2025

    ‘Godfathers of wind’ raise alarm amid Trump’s attacks on renewables

    November 12, 2025

    Bill to end longest shutdown in history advances to House-wide vote

    November 12, 2025

    Indigenous activists storm COP30 climate summit in Brazil, demanding action | Climate Crisis News

    November 12, 2025
  • Business

    25 Tested Best Business Ideas for College Students in 2026

    November 10, 2025

    Top 10 most-read business insights

    November 10, 2025

    SAP Concur Global Business Travel Survey in 2025

    November 4, 2025

    Global Topic: Panasonic’s environmental solutions in China—building a sustainable business model | Business Solutions | Products & Solutions | Topics

    October 29, 2025

    Google Business Profile New Report Negative Review Extortion Scams

    October 23, 2025
  • Career

    Patrick Mahomes Gets Bad Career News During Chiefs Bye Week

    November 12, 2025

    Veteran, longtime KFYR Newsman dies at age 78

    November 12, 2025

    Swan song: YSU’s Householder closes out decorated volleyball career | News, Sports, Jobs

    November 12, 2025

    KTENDenison high school offering stem career trainingDENISON, Texas (KTEN) – Denison ISD is partnering up with local organizations to invest in hands-on career experience with the high school's….7 hours ago

    November 12, 2025

    WCC’s Operations Management Program Prepares Ennis for Career Success

    November 12, 2025
  • Sports

    OKC Thunder Guard Nikola Topic Diagnosed with Testicular Cancer

    November 12, 2025

    Nikola Topic: Oklahoma City Thunder guard, 20, diagnosed with cancer

    November 11, 2025

    Off Topic: Sports can’t stay fair when betting drives the game

    November 10, 2025

    The road ahead after NCAA settlement comes with risk, reward and warnings

    November 9, 2025

    Thunder’s Nikola Topic diagnosed with testicular cancer – NBC Boston

    November 6, 2025
  • Climate

    PA Environment & Energy Articles & NewsClips By Topic

    November 9, 2025

    NAVAIR Open Topic for Logistics in a Contested Environment”

    November 5, 2025

    Climate-Resilient Irrigation

    October 31, 2025

    PA Environment & Energy Articles & NewsClips By Topic

    October 26, 2025

    important environmental topics 2024| Statista

    October 21, 2025
  • Science
    1. Tech
    2. View All

    Data center energy usage topic of Nov. 25 Tech Council luncheon in Madison » Urban Milwaukee

    November 11, 2025

    Google to add ‘What People Suggest’ in when users will search these topics

    November 1, 2025

    It is a hot topic as Grok and DeepSeek overwhelmed big tech AI models such as ChatGPT and Gemini in ..

    October 24, 2025

    Countdown to the Tech.eu Summit London 2025: Key Topics, Speakers, and Opportunities

    October 23, 2025

    Rare meteor explosion caught on live stream

    November 12, 2025

    ‘The universe will get colder and deader from now on’: Euclid telescope confirms star formation has already peaked in the cosmos

    November 12, 2025

    Key antenna in NASA’s Deep Space Network damaged

    November 12, 2025

    Florida annual launch record broken with late-night Starlink flight – Spaceflight Now

    November 12, 2025
  • Culture

    The 82nd National Folk Festival fills downtown Jackson with culture, music and hope

    November 12, 2025

    Offering a deep dive into the Native handgame – News

    November 12, 2025

    Pet benefits expansion reflects changing culture | EBA

    November 12, 2025

    Mali marionette festival defies militants to celebrate culture

    November 12, 2025

    How Hollywood shaped car culture

    November 12, 2025
  • Health

    WHO sets new global standard for child-friendly cancer drugs, paving way for industry innovation

    November 10, 2025

    Hot Topic, Color Health streamline access to cancer screening

    November 6, 2025

    Health insurance coverage updates the topic of Penn State Extension webinar

    November 5, 2025

    Hot Topic: Public Health Programs & Policy in Challenging Times

    November 5, 2025

    Hot Topic: Public Health Programs & Policy in Challenging Times

    November 2, 2025
  • Lifestyle
Contact
onlyfacts24
Home»Lifestyle»Effect of host microenvironment and bacterial lifestyles on antimicrobial sensitivity and implications for susceptibility testing
Lifestyle

Effect of host microenvironment and bacterial lifestyles on antimicrobial sensitivity and implications for susceptibility testing

May 22, 2025No Comments
Facebook Twitter Pinterest LinkedIn Tumblr Email
44259 2025 113 fig1 html.png
Share
Facebook Twitter LinkedIn Pinterest Email
  • Sturm, A. et al. Accurate and rapid antibiotic susceptibility testing using a machine learning-assisted nanomotion technology platform. Nat. Commun. 15, 2037 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray, C. J. L. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Darby, E. M. et al. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 21, 280–295 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yau, Y. C. W. et al. Randomized controlled trial of biofilm antimicrobial susceptibility testing in cystic fibrosis patients. J. Cyst. Fibros. 14, 262–266 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cattamanchi, A., Kyabayinze, D., Hubbard, A., Rosenthal, P. J. & Dorsey, G. Distinguishing recrudescence from reinfection in a longitudinal antimalarial drug efficacy study: comparison of results based on genotyping of msp-1, msp-2, and glurp. https://doi.org/10.4269/ajtmh.2003.68.133 (2003).

  • Popovici, J. et al. Recrudescence, Reinfection, or Relapse? A More Rigorous Framework to Assess Chloroquine Efficacy for Plasmodium vivax Malaria. J. Infect. Dis. 219, 315–322 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okoro, C. K. et al. High-resolution single nucleotide polymorphism analysis distinguishes recrudescence and reinfection in recurrent invasive nontyphoidal Salmonella Typhimurium disease. Clin. Infect. Dis. 54, 955–963 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McIvor, A., Koornhof, H. & Kana, B. D. Relapse, re-infection and mixed infections in tuberculosis disease. Pathog. Dis. 75 (2017).

  • Xu, L. et al. Global H. pylori recurrence, recrudescence, and re-infection status after successful eradication in pediatric patients: a systematic review and meta-analysis. J. Gastroenterol. 59, 668–681 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Grant, S. S. & Hung, D. T. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence 4, 273–283 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ku, J. H. et al. Antibiotic resistance of urinary tract infection recurrences in a large integrated US healthcare system. J. Infect. Dis. 230, e1344–e1354 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kadeřábková, N., Mahmood, A. J. S. & Mavridou, D. A. I. Antibiotic susceptibility testing using minimum inhibitory concentration (MIC) assays. Npj Antimicrob. Resist. 2, 1–9 (2024).

    Article 

    Google Scholar
     

  • Kamaruzzaman, N. F., Kendall, S. & Good, L. Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br. J. Pharmacol. 174, 2225–2236 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brauner, A., Fridman, O., Gefen, O. & Balaban, N. Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 14, 320–330 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial Persistence as a Phenotypic Switch. Science 305, 1622–1625 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Macia, M. D., Rojo-Molinero, E. & Oliver, A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin. Microbiol. Infect. 20, 981–990 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aslan, H. et al. Activation of the Two-Component System LisRK Promotes Cell Adhesion and High Ampicillin Tolerance in Listeria monocytogenes. Front. Microbiol. 12, 618174 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stupar, M. et al. TcrXY is an acid-sensing two-component transcriptional regulator of Mycobacterium tuberculosis required for persistent infection. Nat. Commun. 15, 1615 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, D. R. Nitrogen Starvation Induces Persister Cell Formation in Escherichia coli. J. Bacteriol. 201, e00622–18 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moscoso, J. A. et al. The Diguanylate Cyclase SadC Is a Central Player in Gac/Rsm-Mediated Biofilm Formation in Pseudomonas aeruginosa. J. Bacteriol. 196, 4081–4088 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, H., Li, Y. & Wang, Y. Two-component system GacS/GacA, a global response regulator of bacterial physiological behaviors. Eng. Microbiol. 3, 100051 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sultan, M., Arya, R. & Kim, K. K. Roles of Two-Component Systems in Pseudomonas aeruginosa Virulence. Int. J. Mol. Sci. 22, 12152 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ronneau, S. & Helaine, S. Clarifying the Link between Toxin–Antitoxin Modules and Bacterial Persistence. J. Mol. Biol. 431, 3462–3471 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keren, I., Shah, D., Spoering, A., Kaldalu, N. & Lewis, K. Specialized Persister Cells and the Mechanism of Multidrug Tolerance in Escherichia coli. J. Bacteriol. 186, 8172–8180 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tripathi, A., Dewan, P. C., Siddique, S. A. & Varadarajan, R. MazF-induced Growth Inhibition and Persister Generation in Escherichia coli. J. Biol. Chem. 289, 4191–4205 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LeRoux, M., Culviner, P. H., Liu, Y. J., Littlehale, M. L. & Laub, M. T. Stress Can Induce Transcription of Toxin-Antitoxin Systems without Activating Toxin. Mol. Cell 79, 280–292.e8 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawano, M., Aravind, L. & Storz, G. An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol. Microbiol. 64, 738–754 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radzikowski, J. L. et al. Bacterial persistence is an active σS stress response to metabolic flux limitation. Mol. Syst. Biol. 12, 882 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murakami, K. et al. Role for rpoS gene of Pseudomonas aeruginosa in antibiotic tolerance. FEMS Microbiol. Lett. 242, 161–167 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendhe, S., Badge, A., Ugemuge, S. & Chandi, D. Impact of Biofilms on Chronic Infections and Medical Challenges. Cureus https://doi.org/10.7759/cureus.48204 (2023).

  • Flemming, H.-C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H. Y., Prentice, E. L. & Webber, M. A. Mechanisms of antimicrobial resistance in biofilms. Npj Antimicrob. Resist. 2, 27 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shree, P., Singh, C. K., Sodhi, K. K., Surya, J. N. & Singh, D. K. Biofilms: Understanding the structure and contribution towards bacterial resistance in antibiotics. Med. Microecol. 16, 100084 (2023).

    Article 

    Google Scholar
     

  • Yan, J. & Bassler, B. L. Surviving as a Community: Antibiotic Tolerance and Persistence in Bacterial Biofilms. Cell Host Microbe 26, 15–21 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wivagg, C. N., Bhattacharyya, R. P. & Hung, D. T. Mechanisms of β-lactam killing and resistance in the context of Mycobacterium tuberculosis. J. Antibiot. ((Tokyo)) 67, 645–654 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hengzhuang, W., Wu, H., Ciofu, O., Song, Z. & Høiby, N. Pharmacokinetics/Pharmacodynamics of Colistin and Imipenem on Mucoid and Nonmucoid Pseudomonas aeruginosa Biofilms. Antimicrob. Agents Chemother. 55, 4469–4474 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bottery, M. J., Pitchford, J. W. & Friman, V.-P. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 15, 939–948 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Nishino, K., Yamasaki, S., Nakashima, R., Zwama, M. & Hayashi-Nishino, M. Function and Inhibitory Mechanisms of Multidrug Efflux Pumps. Front. Microbiol. 12, 737288 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pu, Y. et al. Enhanced Efflux Activity Facilitates Drug Tolerance in Dormant Bacterial Cells. Mol. Cell 62, 284–294 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byrd, B. A. et al. The AcrAB-TolC Efflux Pump Impacts Persistence and Resistance Development in Stationary-Phase Escherichia coli following Delafloxacin Treatment. Antimicrob. Agents Chemother. 65, e00281–21 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martini, C. L. et al. Cellular Growth Arrest and Efflux Pumps Are Associated With Antibiotic Persisters in Streptococcus pyogenes Induced in Biofilm-Like Environments. Front. Microbiol. 12, 716628 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, G., Dodson, K., Hooton, T. & Hultgren, S. Intracellular bacterial communities of uropathogenic in urinary tract pathogenesis. Trends Microbiol. 12, 424–430 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robino, L. et al. Presence of intracellular bacterial communities in uroepithelial cells, a potential reservoir in symptomatic and non-symptomatic people. BMC Infect. Dis. 24, 590 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morrison, J. J. et al. Metabolic flux regulates growth transitions and antibiotic tolerance in uropathogenic Escherichia coli. J. Bacteriol. 206, e00162–24 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MacNair, C. R. & Tan, M. The role of bacterial membrane vesicles in antibiotic resistance. Ann. N. Y. Acad. Sci. 1519, 63–73 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwechheimer, C. & Kuehn, M. J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 13, 605–619 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Y. & Lin, H. Characterization and function of membrane vesicles in Gram-positive bacteria. Appl. Microbiol. Biotechnol. 105, 1795–1801 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hua, Y. et al. Outer membrane vesicles-transmitted virulence genes mediate the emergence of new antimicrobial-resistant hypervirulent Klebsiella pneumoniae. Emerg. Microbes Infect. 11, 1281–1292 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lehmkuhl, J. et al. Role of membrane vesicles in the transmission of vancomycin resistance in Enterococcus faecium. Sci. Rep. 14, 1895 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rumbo, C. et al. Horizontal Transfer of the OXA-24 Carbapenemase Gene via Outer Membrane Vesicles: a New Mechanism of Dissemination of Carbapenem Resistance Genes in Acinetobacter baumannii. Antimicrob. Agents Chemother. 55, 3084–3090 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. W. et al. The Importance of Porins and β-Lactamase in Outer Membrane Vesicles on the Hydrolysis of β-Lactam Antibiotics. Int. J. Mol. Sci. 21, 2822 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhital, S. et al. Neisseria gonorrhoeae -derived outer membrane vesicles package β-lactamases to promote antibiotic resistance. microLife 3, uqac013 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olovo, C. V., Wiredu Ocansey, D. K., Ji, Y., Huang, X. & Xu, M. Bacterial membrane vesicles in the pathogenesis and treatment of inflammatory bowel disease. Gut Microbes 16, 2341670 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray, B. O., Dawson, R. A., Alsharaf, L. M. & Anne Winter, J. Protective effects of Helicobacter pylori membrane vesicles against stress and antimicrobial agents. Microbiology 166, 751–758 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulkarni, H. M., Nagaraj, R. & Jagannadham, M. V. Protective role of E. coli outer membrane vesicles against antibiotics. Microbiol. Res. 181, 1–7 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manning, A. J. & Kuehn, M. J. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11, 258 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andreoni, F. et al. Antibiotics Stimulate Formation of Vesicles in Staphylococcus aureus in both Phage-Dependent and -Independent Fashions and via Different Routes. Antimicrob. Agents Chemother. 63, e01439–18 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X. et al. Research Progress on Bacterial Membrane Vesicles and Antibiotic Resistance. Int. J. Mol. Sci. 23, 11553 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q. et al. Sub-MIC Antibiotics Modulate Productions of Outer Membrane Vesicles in Tigecycline-Resistant Escherichia coli. Antibiotics 13, 276 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendez, J. A. et al. Extracellular Proteome of a Highly Invasive Multidrug-resistant Clinical Strain of Acinetobacter baumannii. J. Proteome Res. 11, 5678–5694 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yonezawa, H. et al. Analysis of outer membrane vesicle protein involved in biofilm formation of Helicobacter pylori. Anaerobe 17, 388–390 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Z. et al. Regulation of the formation and structure of biofilms by quorum sensing signal molecules packaged in outer membrane vesicles. Sci. Total Environ. 806, 151403 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mickiewicz, K. M. et al. Possible role of L-form switching in recurrent urinary tract infection. Nat. Commun. 10, 4379 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kilcher, S. & Loessner, M. J. Engineering Bacteriophages as Versatile Biologics. Trends Microbiol. 27, 355–367 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kawai, Y. et al. Cell Growth of Wall-Free L-Form Bacteria Is Limited by Oxidative Damage. Curr. Biol. 25, 1613–1618 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Day, N. J., Santucci, P. & Gutierrez, M. G. Host cell environments and antibiotic efficacy in tuberculosis. Trends Microbiol. 32, 270–279 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walsh, J. et al. Impact of host and environmental factors on β-glucuronidase enzymatic activity: implications for gastrointestinal serotonin. Am. J. Physiol. -Gastrointest. Liver Physiol. 318, G816–G826 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nussbaumer-Pröll, A. K. et al. Impact of erythrocytes on bacterial growth and antimicrobial activity of selected antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 38, 485–495 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed, H., Bergmann, F. & Zeitlinger, M. Protein Binding in Translational Antimicrobial Development-Focus on Interspecies Differences. Antibiotics 11, 923 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ledger, E. V. K., Mesnage, S. & Edwards, A. M. Human serum triggers antibiotic tolerance in Staphylococcus aureus. Nat. Commun. 13, 2041 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Q., Pilewski, J. M. & Di, Y. P. Acidic Microenvironment Determines Antibiotic Susceptibility and Biofilm Formation of Pseudomonas aeruginosa. Front. Microbiol. 12, 747834 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y. et al. An acid-tolerance response system protecting exponentially growing Escherichia coli. Nat. Commun. 11, 1496 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loffredo, M. R. et al. The pH-Insensitive Antimicrobial and Antibiofilm Activities of the Frog Skin Derived Peptide Esc(1-21): Promising Features for Novel Anti-Infective Drugs. Antibiotics 13, 701 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martín-Gutiérrez, G. et al. Urinary Tract Physiological Conditions Promote Ciprofloxacin Resistance in Low-Level-Quinolone-Resistant Escherichia coli. Antimicrob. Agents Chemother. 60, 4252–4258 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cunha, B. A. An infectious disease and pharmacokinetic perspective on oral antibiotic treatment of uncomplicated urinary tract infections due to multidrug-resistant Gram-negative uropathogens: the importance of urinary antibiotic concentrations and urinary pH. Eur. J. Clin. Microbiol. Infect. Dis. 35, 521–526 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herrera-Espejo, S. et al. Acidic Urine pH and Clinical Outcome of Lower Urinary Tract Infection in Kidney Transplant Recipients Treated with Ciprofloxacin and Fosfomycin. Antibiotics 13, 116 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kincses, A. et al. The Relationship between Antibiotic Susceptibility and pH in the Case of Uropathogenic Bacteria. Antibiotics 10, 1431 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbott, I. J. et al. Evaluation of pooled human urine and synthetic alternatives in a dynamic bladder infection in vitro model simulating oral fosfomycin therapy. J. Microbiol. Methods 171, 105861 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neve, R. L., Carrillo, B. D. & Phelan, V. V. Impact of Artificial Sputum Medium Formulation on Pseudomonas aeruginosa Secondary Metabolite Production. J. Bacteriol. 203, https://doi.org/10.1128/jb.00250-21 (2021).

  • Tognon, M., Köhler, T., Luscher, A. & van Delden, C. Transcriptional profiling of Pseudomonas aeruginosa and Staphylococcus aureus during in vitro co-culture. BMC Genomics 20, 30 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chapot, V., Effenberg, L., Dohmen-Ruetten, J., Buer, J. & Kehrmann, J. Evaluation of the Accelerate Pheno System for Rapid Identification and Antimicrobial Susceptibility Testing of Positive Blood Culture Bottles Inoculated with Primary Sterile Specimens from Patients with Suspected Severe Infections. J. Clin. Microbiol. 59, https://doi.org/10.1128/jcm.02637-20 (2021).

  • Alonso-Tarrés, C. et al. Bacteriuria and phenotypic antimicrobial susceptibility testing in 45 min by point-of-care Sysmex PA-100 System: first clinical evaluation. Eur. J. Clin. Microbiol. Infect. Dis. 43, 1533–1543 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ersoy, S. C. et al. Correcting a fundamental flaw in the paradigm for antimicrobial susceptibility testing. EBioMedicine 20, 173–181 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heithoff, D. M. et al. Re-evaluation of FDA-approved antibiotics with increased diagnostic accuracy for assessment of antimicrobial resistance. Cell Rep. Med. 4, 101023 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker, E. J., Allcott, G., Molloy, A. & Cox, J. A. G. Cystic fibrosis sputum media induces an overall loss of antibiotic susceptibility in Mycobacterium abscessus. Npj Antimicrob. Resist. 2, 1–8 (2024).

    Article 

    Google Scholar
     

  • Cornforth, D. M. et al. Pseudomonas aeruginosa transcriptome during human infection. Proc. Natl. Acad. Sci. USA 115, E5125–E5134 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cottell, J. L. & Webber, M. A. Experiences in fosfomycin susceptibility testing and resistance mechanism determination in Escherichia coli from urinary tract infections in the UK. J. Med. Microbiol. 68, 161–168 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ciofu, O., Moser, C., Jensen, P. Ø & Høiby, N. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 20, 621–635 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Padron, G. C., Shuppara, A. M., Palalay, J.-J. S., Sharma, A. & Sanfilippo, J. E. Bacteria in fluid flow. J. Bacteriol. 205, e00400–e00422 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perry, E. K. & Tan, M.-W. Bacterial biofilms in the human body: prevalence and impacts on health and disease. Front. Cell. Infect. Microbiol. 13, 1237164 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Römling, U. & Balsalobre, C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J. Intern. Med. 272, 541–561 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Sharma, D., Misba, L. & Khan, A. U. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 8, 76 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guzmán-Soto, I. et al. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. iScience 24, 102443 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rumbaugh, K. P. & Whiteley, M. Towards improved biofilm models. Nat. Rev. Microbiol. 23, 57–66 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coenye, T. Biofilm antimicrobial susceptibility testing: where are we and where could we be going?. Clin. Microbiol. Rev. 36, e00024–23 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thieme, L. et al. MBEC Versus MBIC: the Lack of Differentiation between Biofilm Reducing and Inhibitory Effects as a Current Problem in Biofilm Methodology. Biol. Proced. Online 21, 18 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cruz, C. D., Shah, S. & Tammela, P. Defining conditions for biofilm inhibition and eradication assays for Gram-positive clinical reference strains. BMC Microbiol. 18, 173 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bjarnsholt, T. et al. The in vivo biofilm. Trends Microbiol. 21, 466–474 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cometta, S., Hutmacher, D. W. & Chai, L. In vitro models for studying implant-associated biofilms – A review from the perspective of bioengineering 3D microenvironments. Biomaterials 309, 122578 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vyas, H. K. N., Xia, B. & Mai-Prochnow, A. Clinically relevant in vitro biofilm models: a need to mimic and recapitulate the host environment. Biofilm 4, 100069 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, Q. et al. Regrowth of microcosm biofilms on titanium surfaces after various antimicrobial treatments. Front. Microbiol. 10, 2693 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maset, R. G. et al. Combining SNAPs with antibiotics shows enhanced synergistic efficacy against S. aureus and P. aeruginosa biofilms. Npj Biofilms Microbiomes 9, 1–17 (2023).


    Google Scholar
     

  • Jafari, N. V. & Rohn, J. L. An immunoresponsive three-dimensional urine-tolerant human urothelial model to study urinary tract infection. Front. Cell. Infect. Microbiol. 13, 1128132 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flores, C. et al. A human urothelial microtissue model reveals shared colonization and survival strategies between uropathogens and commensals. Sci. Adv. 9, eadi9834 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, K. et al. Dynamic persistence of UPEC intracellular bacterial communities in a human bladder-chip model of urinary tract infection. eLife 10, e66481 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray, B. O. et al. Recurrent Urinary Tract Infection: A Mystery in Search of Better Model Systems. Front. Cell. Infect. Microbiol. 11, 691210 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayr, F. B., Yende, S. & Angus, D. C. Epidemiology of severe sepsis. Virulence 5, 4–11 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Foxman, B. Urinary Tract Infection Syndromes: Occurrence, Recurrence, Bacteriology, Risk Factors, and Disease Burden. Infect. Dis. Clin. North Am. 28, 1–13 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Doern, G. V. & Brecher, S. M. The Clinical Predictive Value (or Lack Thereof) of the Results of In Vitro Antimicrobial Susceptibility Tests. J. Clin. Microbiol. 49, S11–S14 (2011).

    Article 
    PubMed Central 

    Google Scholar
     

  • Cui, S. & Kim, E. Quorum sensing and antibiotic resistance in polymicrobial infections. Commun. Integr. Biol. 17, 2415598 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, V. L. et al. An International Prospective Study of Pneumococcal Bacteremia: Correlation with In Vitro Resistance, Antibiotics Administered, and Clinical Outcome. Clin. Infect. Dis. 37, 230–237 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Somayaji, R. et al. Antimicrobial susceptibility testing (AST) and associated clinical outcomes in individuals with cystic fibrosis: A systematic review. J. Cyst. Fibros. 18, 236–243 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bjarnsholt, T. et al. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr. Pulmonol. 44, 547–558 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Harrington, N. E., Sweeney, E. & Harrison, F. Building a better biofilm – Formation of in vivo-like biofilm structures by Pseudomonas aeruginosa in a porcine model of cystic fibrosis lung infection. Biofilm 2, 100024 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baltimore, R. S., Christie, C. D. & Smith, G. J. Immunohistopathologic localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Implications for the pathogenesis of progressive lung deterioration. Am. Rev. Respir. Dis. 140, 1650–1661 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • M02 Ed14 | Performance Standards for Antimicrobial Disk Susceptibility Tests, 14th Edition. Clinical & Laboratory Standards Institute https://clsi.org/standards/products/microbiology/documents/m02/

  • Kowalska-Krochmal, B. & Dudek-Wicher, R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens 10, 165 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balouiri, M., Sadiki, M. & Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6, 71 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Gajic, I. et al. Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics 11, 427 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishak, A., Mazonakis, N., Spernovasilis, N., Akinosoglou, K. & Tsioutis, C. Bactericidal versus bacteriostatic antibacterials: clinical significance, differences and synergistic potential in clinical practice. J. Antimicrob. Chemother. 80, 1–17 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Kepiro, I., Ryadnov, M. G. & Pagliara, S. Single Cell Killing Kinetics Differentiate Phenotypic Bacterial Responses to Different Antibacterial Classes. Microbiol. Spectr. 11, e03667–22 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levison, M. E. & Levison, J. H. Pharmacokinetics and Pharmacodynamics of Antibacterial Agents. Infect. Dis. Clin. North Am. 23, 791–vii (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bjarnsholt, T. et al. The importance of understanding the infectious microenvironment. Lancet Infect. Dis. 22, e88–e92 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassall, J., Coxon, C., Patel, V. C., Goldenberg, S. D. & Sergaki, C. Limitations of current techniques in clinical antimicrobial resistance diagnosis: examples and future prospects. Npj Antimicrob. Resist. 2, 16 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • M26-A: Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline.

  • Foerster, S., Unemo, M., Hathaway, L. J., Low, N. & Althaus, C. L. Time-kill curve analysis and pharmacodynamic modelling for in vitro evaluation of antimicrobials against Neisseria gonorrhoeae. BMC Microbiol. 16, 216 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antibiotic tolerance among clinical isolates: mechanisms, detection, prevalence, and significance | Clinical Microbiology Reviews. https://journals.asm.org/doi/10.1128/cmr.00106-24.

  • Mueller, M., De La Peña, A. & Derendorf, H. Issues in Pharmacokinetics and Pharmacodynamics of Anti-Infective Agents: Kill Curves versus MIC. Antimicrob. Agents Chemother. 48, 369–377 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gumbo, T. et al. Hollow-fibre system model of tuberculosis reproducibility and performance specifications for best practice in drug and combination therapy development. J. Antimicrob. Chemother. 78, 953–964 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hammond, R. J. H. Using Hollow Fiber to Model Treatment of Antimicrobial-Resistant Organisms. Methods Mol. Biol. Clifton NJ 2833, 57–64 (2024).

    Article 

    Google Scholar
     

  • Kloprogge, F., Hammond, R., Kipper, K., Gillespie, S. H. & Della Pasqua, O. Mimicking in-vivo exposures to drug combinations in-vitro: anti-tuberculosis drugs in lung lesions and the hollow fiber model of infection. Sci. Rep. 9, 13228 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Narasimhan, V. et al. Nucleic Acid Amplification-Based Technologies (NAAT)—Toward Accessible, Autonomous, and Mobile Diagnostics. Adv. Mater. Technol. 8, 2300230 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Luo, J., Yu, J., Yang, H. & Wei, H. Parallel susceptibility testing of bacteria through culture-quantitative PCR in 96-well plates. Int. J. Infect. Dis. 70, 86–92 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Framing Bacterial Genomics for Public Health (Care) | Journal of Clinical Microbiology. https://journals.asm.org/doi/10.1128/jcm.00135-21.

  • Weinmaier, T. et al. Validation and Application of Long-Read Whole-Genome Sequencing for Antimicrobial Resistance Gene Detection and Antimicrobial Susceptibility Testing. Antimicrob. Agents Chemother. 67, e01072–22 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamae, C. et al. Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli. J. Bacteriol. 190, 5981–5988 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki, S., Horinouchi, T. & Furusawa, C. Prediction of antibiotic resistance by gene expression profiles. Nat. Commun. 5, 5792 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ellington, M. J. et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin. Microbiol. Infect. 23, 2–22 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoon, E.-J. & Jeong, S. H. MALDI-TOF mass spectrometry technology as a tool for the rapid diagnosis of antimicrobial resistance in bacteria. Antibiot. Basel Switz. 10, 982 (2021).

    CAS 

    Google Scholar
     

  • Wieser, A., Schneider, L., Jung, J. & Schubert, S. MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review). Appl. Microbiol. Biotechnol. 93, 965–974 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oviaño, M. & Rodríguez-Sánchez, B. MALDI-TOF mass spectrometry in the 21st century clinical microbiology laboratory. Enfermedades Infecc. Microbiol. Clin. Engl. Ed 39, 192–200 (2021).

    Article 

    Google Scholar
     

  • Idelevich, E. A. & Becker, K. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for antimicrobial susceptibility testing. J. Clin. Microbiol. 59, e0181419 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Fedrigo, N. H. et al. Pharmacodynamic evaluation of fosfomycin against Escherichia coli and Klebsiella spp. from urinary tract infections and the influence of pH on fosfomycin activities. Antimicrob. Agents Chemother. 61, e02498–16 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Debets-Ossenkopp, Y. J. & MacLaren, D. M. Effect of an acidic environment on the susceptibility of helicobacterpyiori to trospectomycin and other antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis. 14, 353–355 (1995).

  • Aust, A.-C. et al. Influence of kidney environment parameters on antibiotic efficacy against uropathogenic Escherichia coli. Eur. Urol. Focus 10, 742–750 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Withman, B., Gunasekera, T. S., Beesetty, P., Agans, R. & Paliy, O. Transcriptional responses of uropathogenic Escherichia coli to increased environmental osmolality caused by salt or urea. Infect. Immun. 81, 80–89 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landry, R. M., An, D., Hupp, J. T., Singh, P. K. & Parsek, M. R. Mucin–Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. Mol. Microbiol. 59, 142–151 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vasiljevs, S., Gupta, A. & Baines, D. Effect of glucose on growth and co-culture of Staphylococcus aureus and Pseudomonas aeruginosa in artificial sputum medium. Heliyon 9, e21469 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dörr, T., Lewis, K. & Vulić, M. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet. 5, e1000760 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peyrusson, F. et al. Intracellular Staphylococcus aureus persisters upon antibiotic exposure. Nat. Commun. 11, 2200 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michiels, J. E., Van Den Bergh, B., Verstraeten, N., Fauvart, M. & Michiels, J. In vitro emergence of high persistence upon periodic aminoglycoside challenge in the ESKAPE pathogens. Antimicrob. Agents Chemother. 60, 4630–4637 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brinkman, F. S. L., Macfarlane, E. L. A., Warrener, P. & Hancock, R. E. W. Evolutionary Relationships among Virulence-Associated Histidine Kinases. Infect. Immun. 69, 5207–5211 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murtha, A. N. et al. High-level carbapenem tolerance requires antibiotic-induced outer membrane modifications. PLoS Pathog. 18, e1010307 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nalca, Y. et al. Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach. Antimicrob. Agents Chemother. 50, 1680–1688 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hentzer, M. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22, 3803–3815 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leung, V. & Lévesque, C. M. A stress-inducible quorum-sensing peptide mediates the formation of persister cells with noninherited multidrug tolerance. J. Bacteriol. 194, 2265–2274 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muthuramalingam, M., White, J. C., Murphy, T., Ames, J. R. & Bourne, C. R. The toxin from a ParDE toxin-antitoxin system found in Pseudomonas aeruginosa offers protection to cells challenged with anti-gyrase antibiotics. Mol. Microbiol. 111, 441–454 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choudhary, E., Sharma, R., Kumar, Y. & Agarwal, N. Conditional silencing by CRISPRi reveals the role of DNA gyrase in formation of drug-tolerant persister population in Mycobacterium tuberculosis. Front. Cell. Infect. Microbiol. 9, 70 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bryson, D., Hettle, A. G., Boraston, A. B. & Hobbs, J. K. Clinical mutations that partially activate the stringent response confer multidrug tolerance in Staphylococcus aureus. Antimicrob. Agents Chemother. 64, e02103–e02119 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dutta, N. K. et al. Inhibiting the stringent response blocks Mycobacterium tuberculosis entry into quiescence and reduces persistence. Sci. Adv. 5, eaav2104 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderl, J. N., Zahller, J., Roe, F. & Stewart, P. S. Role of Nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 47, 1251–1256 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, K. N. et al. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145, 39–53 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srinivasan, V. B. & Rajamohan, G. KpnEF, a New Member of the Klebsiella pneumoniae cell envelope stress response regulon, Is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob. Agents Chemother. 57, 4449–4462 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaiser, P. et al. Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment. PLoS Biol. 12, e1001793 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maredia, R. et al. Vesiculation from Pseudomonas aeruginosa under SOS. Sci. World J. 2012, 1–18 (2012).

    Article 

    Google Scholar
     

  • Kim, S. W. et al. Significant increase in the secretion of extracellular vesicles and antibiotics resistance from methicillin-resistant Staphylococcus aureus induced by ampicillin stress. Sci. Rep. 10, 21066 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Y., Cai, Y., Sun, T., Li, G. & An, T. Response mechanisms of resistance in L-form bacteria to different target antibiotics: Implications from oxidative stress to metabolism. Environ. Int. 187, 108729 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merritt, J. H., Kadouri, D. E. & O’Toole, G. A. Growing and analyzing static biofilms. Curr. Protoc. Microbiol. 0 1, Unit-1B.1 (2005).

  • Crivello, G., Fracchia, L., Ciardelli, G., Boffito, M. & Mattu, C. In vitro models of bacterial biofilms: innovative tools to improve understanding and treatment of infections. Nanomaterials 13, 904 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Straub, H. et al. A microfluidic platform for in situ investigation of biofilm formation and its treatment under controlled conditions. J. Nanobiotechnol.18, 166 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gomes, I. B. et al. Standardized reactors for the study of medical biofilms: a review of the principles and latest modifications. Crit. Rev. Biotechnol. 38, 657–670 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J.-H., Kaplan, J. B. & Lee, W. Y. Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms. Biomed. Microdev.10, 489–498 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Blanco-Cabra, N. et al. A new BiofilmChip device for testing biofilm formation and antibiotic susceptibility. Npj Biofilms Microbiomes 7, 1–9 (2021).

    Article 

    Google Scholar
     

  • Sriramulu, D. D., Lünsdorf, H., Lam, J. S. & Römling, U. Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J. Med. Microbiol. 54, 667–676 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Palmer, K. L., Aye, L. M. & Whiteley, M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J. Bacteriol. 189, 8079–8087 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Y., Dowd, S. E., Smith, E., Rhoads, D. D. & Wolcott, R. D. In vitro multispecies Lubbock chronic wound biofilm model. Wound Repair Regen. Off. Publ. Wound Heal. Soc. Eur. Tissue Repair Soc. 16, 805–813 (2008).


    Google Scholar
     

  • Werthén, M. et al. An in vitro model of bacterial infections in wounds and other soft tissues. APMIS Acta Pathol. Microbiol. Immunol. Scand. 118, 156–164 (2010).

    Article 

    Google Scholar
     

  • Charles, C. A., Ricotti, C. A., Davis, S. C., Mertz, P. M. & Kirsner, R. S. Use of tissue-engineered skin to study in vitro biofilm development. Dermatol. Surg. Off. Publ. Am. Soc. Dermatol. Surg. Al 35, 1334–1341 (2009).

    CAS 

    Google Scholar
     

  • high-throughput microfluidic dental plaque biofilm system to visualize and quantify the effect of antimicrobials | Journal of Antimicrobial Chemotherapy | Oxford Academic. https://academic.oup.com/jac/article-abstract/68/11/2550/828884?redirectedFrom=fulltext.

  • Samarian, D. S., Jakubovics, N. S., Luo, T. L. & Rickard, A. H. Use of a high-throughput in vitro microfluidic system to develop oral multi-species biofilms. J. Vis. Exp. JoVE 52467 https://doi.org/10.3791/52467 (2014).

  • Lamret, F. et al. Human Osteoblast-Conditioned Media Can Influence Staphylococcus aureus Biofilm Formation. Int. J. Mol. Sci. 23, 14393 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chutipongtanate, S. & Thongboonkerd, V. Systematic comparisons of artificial urine formulas for in vitro cellular study. Anal. Biochem. 402, 110–112 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ipe, D. S. & Ulett, G. C. Evaluation of the in vitro growth of urinary tract infection-causing gram-negative and gram-positive bacteria in a proposed synthetic human urine (SHU) medium. J. Microbiol. Methods 127, 164–171 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Rimbi, P. T. et al. Enhancing a multi-purpose artificial urine for culture and gene expression studies of uropathogenic Escherichia coli strains. J. Appl. Microbiol. 135, lxae067 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Townsend, E. M., Moat, J. & Jameson, E. CAUTI’s next top model – Model dependent Klebsiella biofilm inhibition by bacteriophages and antimicrobials. Biofilm 2, 100038 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaborskyte, G., Wistrand-Yuen, E., Hjort, K., Andersson, D. I. & Sandegren, L. Modular 3D-printed peg biofilm device for flexible setup of surface-related biofilm studies. Front. Cell. Infect. Microbiol. 11, 802303 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alves, D. R. et al. Development of a High-Throughput ex-Vivo Burn Wound Model Using Porcine Skin, and Its Application to Evaluate New Approaches to Control Wound Infection. Front. Cell. Infect. Microbiol. 8, 196 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maset, R. G. et al. Combining SNAPs with antibiotics shows enhanced synergistic efficacy against S. aureus and P. aeruginosa biofilms. NPJ Biofilms Microbiomes 9, 36 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wurbs, A. et al. A human ex vivo skin model breaking boundaries. Sci. Rep. 14, 24054 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, Q. et al. Candida albicans promotes tooth decay by inducing oral microbial dysbiosis. ISME J. 15, 894–908 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Poel, E. et al. FDA-approved drug screening in patient-derived organoids demonstrates potential of drug repurposing for rare cystic fibrosis genotypes. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 22, 548–559 (2023).

    Article 

    Google Scholar
     

  • Sollier, J. et al. Revitalizing antibiotic discovery and development through in vitro modelling of in-patient conditions. Nat. Microbiol. 9, 1–3 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aguilar, C. et al. Organoids as host models for infection biology – a review of methods. Exp. Mol. Med. 53, 1471–1482 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swart, A. L. et al. Pseudomonas aeruginosa breaches respiratory epithelia through goblet cell invasion in a microtissue model. Nat. Microbiol. 9, 1725–1737 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Meirelles, L. A. et al. Pseudomonas aeruginosa faces a fitness trade-off between mucosal colonization and antibiotic tolerance during airway infection. Nat. Microbiol. 9, 3284–3303 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, X. et al. Creating a more perfect union: modeling intestinal bacteria-epithelial interactions using organoids. Cell. Mol. Gastroenterol. Hepatol. 12, 769–782 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anonye, B. O. et al. Probing Clostridium difficile Infection in Complex Human Gut Cellular Models. Front. Microbiol. 10, 879 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dash, S. K., Marques, C. N. H. & Mahler, G. J. Small intestine on a chip demonstrates physiologic mucus secretion in the presence of Lacticaseibacillus rhamnosus biofilm. Biotechnol. Bioeng. 1–12 (2025).

  • Łaniewski, P. & Herbst-Kralovetz, M. M. Bacterial vaginosis and health-associated bacteria modulate the immunometabolic landscape in 3D model of human cervix. Npj Biofilms Microbiomes 7, 1–17 (2021).

    Article 

    Google Scholar
     

  • Redman, W. K. et al. Efficacy and safety of biofilm dispersal by glycoside hydrolases in wounds. Biofilm 3, 100061 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nissanka, M. C., Dilhari, A., Wijesinghe, G. K. & Weerasekera, M. M. Advances in experimental bladder models: bridging the gap between in vitro and in vivo approaches for investigating urinary tract infections. BMC Urol. 24, 206 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conover, M. S., Flores-Mireles, A. L., Hibbing, M. E., Dodson, K. & Hultgren, S. J. Establishment and Characterization of UTI and CAUTI in a Mouse Model. J. Vis. Exp. JoVE e52892, https://doi.org/10.3791/52892 (2015).

  • Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Transposable Element Variability and Lifestyle Factors in Italy

    November 12, 2025

    Sarasota Memorial launches lifestyle medicine program to reduce chronic disease risk

    November 12, 2025

    Health experts sound alarm over lifestyle epidemic as smoking, obesity and misinformation rise

    November 12, 2025

    Jeff Goldblum Reveals He Made a Major Lifestyle Change Because of ‘Wicked’

    November 12, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Latest Posts

    OKC Thunder Guard Nikola Topic Diagnosed with Testicular Cancer

    November 12, 2025

    NFL news: Giants to start Jameis Winston at quarterback in Week 11

    November 12, 2025

    Rare meteor explosion caught on live stream

    November 12, 2025

    Patrick Mahomes Gets Bad Career News During Chiefs Bye Week

    November 12, 2025
    News
    • Breaking News (5,201)
    • Business (316)
    • Career (4,415)
    • Climate (216)
    • Culture (4,384)
    • Education (4,602)
    • Finance (211)
    • Health (864)
    • Lifestyle (4,267)
    • Science (4,290)
    • Sports (339)
    • Tech (176)
    • Uncategorized (1)

    Subscribe to Updates

    Get the latest news from onlyfacts24.

    Follow Us
    • Facebook
    • Instagram
    • TikTok

    Subscribe to Updates

    Get the latest news from ONlyfacts24.

    News
    • Breaking News (5,201)
    • Business (316)
    • Career (4,415)
    • Climate (216)
    • Culture (4,384)
    • Education (4,602)
    • Finance (211)
    • Health (864)
    • Lifestyle (4,267)
    • Science (4,290)
    • Sports (339)
    • Tech (176)
    • Uncategorized (1)
    Facebook Instagram TikTok
    • About us
    • Contact us
    • Disclaimer
    • Privacy Policy
    • Terms and services
    © 2025 Designed by onlyfacts24

    Type above and press Enter to search. Press Esc to cancel.