Close Menu
  • Breaking News
  • Business
  • Career
  • Sports
  • Climate
  • Science
    • Tech
  • Culture
  • Health
  • Lifestyle
  • Facebook
  • Instagram
  • TikTok
Categories
  • Breaking News (5,002)
  • Business (312)
  • Career (4,242)
  • Climate (213)
  • Culture (4,210)
  • Education (4,425)
  • Finance (202)
  • Health (853)
  • Lifestyle (4,098)
  • Science (4,113)
  • Sports (311)
  • Tech (174)
  • Uncategorized (1)
Hand Picked

‘World’s first’ Museum of Youth Culture to open in London · News ⟋ RA

October 26, 2025

PA Environment & Energy Articles & NewsClips By Topic

October 26, 2025

Two killed in Cameroon protests ahead of election results, opposition says | Elections News

October 26, 2025

A humming annoyance or jobs boom? Life next to 199 data centres in Virginia

October 26, 2025
Facebook X (Twitter) Instagram
  • About us
  • Contact us
  • Disclaimer
  • Privacy Policy
  • Terms and services
Facebook X (Twitter) Instagram
onlyfacts24
  • Breaking News

    Two killed in Cameroon protests ahead of election results, opposition says | Elections News

    October 26, 2025

    Novartis Avidity Biosciences in talks

    October 26, 2025

    Jets legend Nick Mangold dead after complications with kidney disease

    October 26, 2025

    A Pakistan foreign policy renaissance? Not quite | Politics

    October 26, 2025

    Top Wall Street analysts champion these 3 stocks for solid returns

    October 26, 2025
  • Business

    Google Business Profile New Report Negative Review Extortion Scams

    October 23, 2025

    Land Topic is Everybody’s Business

    October 20, 2025

    Global Topic: Air India selects Panasonic Avionics’ Astrova for 34 widebody aircraft | Business Solutions | Products & Solutions | Topics

    October 19, 2025

    Business Engagement | IUCN

    October 14, 2025

    10 ways artificial intelligence is transforming operations management | IBM

    October 11, 2025
  • Career

    Staff Excellence: Center for Career Opportunities

    October 26, 2025

    Networking opportunities await at UAFS All-Majors Career Fair

    October 26, 2025

    ‘Aviation has a place for you’: Families explore career paths amid Triad’s aviation boom

    October 26, 2025

    Carlos Yulo wins second career vaulting gold

    October 26, 2025

    Kyshawn George News: Pours in career-high 34 in Dallas

    October 26, 2025
  • Sports

    Bye Week Off-Topic Thread – Yahoo Sports

    October 25, 2025

    This Thunder Rookie Guard Benefits from the Nikola Topic Injury

    October 23, 2025

    South Bend Topic Sports-betting | WSBT 22: News, Weather and Sports for Michiana

    October 21, 2025

    John Tesh’s iconic ‘Roundball Rock’ theme returns for NBA on NBC

    October 21, 2025

    YahooSergio Scariolo touched on the topic of European …Sergio Scariolo touched on the topic of European basketball and the NBA Europe project. “We don't have enough information..2 days ago

    October 21, 2025
  • Climate

    PA Environment & Energy Articles & NewsClips By Topic

    October 26, 2025

    important environmental topics 2024| Statista

    October 21, 2025

    World BankDevelopment TopicsProvide sustainable food systems, water, and economies for healthy people and a healthy planet. Agriculture · Agribusiness and Value Chains · Climate-Smart….2 days ago

    October 20, 2025

    PA Environment & Energy Articles & NewsClips By Topic

    October 17, 2025

    World Bank Group and the Intergovernmental Negotiating Committee on Plastic Pollution Process

    October 14, 2025
  • Science
    1. Tech
    2. View All

    It is a hot topic as Grok and DeepSeek overwhelmed big tech AI models such as ChatGPT and Gemini in ..

    October 24, 2025

    Countdown to the Tech.eu Summit London 2025: Key Topics, Speakers, and Opportunities

    October 23, 2025

    The High-Tech Agenda of the German government

    October 20, 2025

    Texas Tech Universities Ban Teaching About Transgender and Other Gender Topics

    October 19, 2025

    Astronomers Just Found a Sneaky Asteroid Near the Sun—and It Highlights a Dangerous Blind Spot

    October 26, 2025

    Orion Spacecraft Completes Major Stacking Milestone Ahead of Artemis II Mission

    October 26, 2025

    How To Grab A Final Chance To See The Comet On Saturday Night

    October 26, 2025

    A doomed planet is being torn up by its ‘zombie’ white dwarf star — but astronomers don’t understand why

    October 26, 2025
  • Culture

    ‘World’s first’ Museum of Youth Culture to open in London · News ⟋ RA

    October 26, 2025

    Hundreds of books on NYC history and culture available at sale

    October 26, 2025

    First, came the Louvre heist. Then came the memes

    October 26, 2025

    Jeff Minick: ‘The canary in the coal mine of culture

    October 26, 2025

    San Francisco Chinese Culture Center, oldest of its kind in the nation, celebrates new permanent home in Chinatown

    October 26, 2025
  • Health

    Hampton: Community Encouraged To Attend November Los Alamos County Health Council Meeting

    October 24, 2025

    Health Insurance vs. Nuclear Weapons

    October 23, 2025

    Health Care Coverage For Seniors Topic Of West Hartford Forum

    October 20, 2025

    Mental health & finance topic for women @Bromley conference

    October 17, 2025

    Mental health & finance topic for women @Bromley conference

    October 17, 2025
  • Lifestyle
Contact
onlyfacts24
Home»Health»Detecting and tracking depression through temporal topic modeling of tweets: insights from a 180-day study
Health

Detecting and tracking depression through temporal topic modeling of tweets: insights from a 180-day study

December 7, 2024No Comments
Facebook Twitter Pinterest LinkedIn Tumblr Email
44184 2024 107 Fig1 Html.png
Share
Facebook Twitter LinkedIn Pinterest Email
  • Depressive disorder (depression). https://www.who.int/news-room/fact-sheets/detail/depression.

  • Brody, D. J., Pratt, L. A. & Hughes, J. P. Prevalence of depression among adults aged 20 and over: United States, 2013–2016. NCHS Data Brief 303, 1–8 (2018). https://www.cdc.gov/nchs/products/databriefs/db303.htm.

  • Major depression. National Institute of Mental Health (NIMH) https://www.nimh.nih.gov/health/statistics/major-depression.

  • El-Den, S., Chen, T. F., Gan, Y.-L., Wong, E. & O’Reilly, C. L. The psychometric properties of depression screening tools in primary healthcare settings: a systematic review. J. Affect. Disord. 225, 503–522 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Handbook of Clinical Rating Scales and Assessment in Psychiatry and Mental Health (Humana Press, Totowa, 2010). https://doi.org/10.1007/978-1-59745-387-5.

  • Stockings, E. et al. Symptom screening scales for detecting major depressive disorder in children and adolescents: a systematic review and meta-analysis of reliability, validity and diagnostic utility. J. Affect. Disord. 174, 447–463. https://doi.org/10.1016/j.jad.2014.11.061 (2015).

  • Kokoszka, A., Cichoń, E., Obrębski, M., Kiejna, A. & Rajba, B. Cut-off points for Polish-language versions of depression screening tools among patients with Type 2 diabetes. Prim. Care Diabetes. https://doi.org/10.1016/j.pcd.2020.05.015 (2020).

  • Coyne, J. C. & van Sonderen, E. No further research needed: abandoning the hospital and anxiety depression scale (HADS). J. Psychosom. Res. 72, 173–174 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Maters, G. A., Sanderman, R., Kim, A. Y. & Coyne, J. C. Problems in cross-cultural use of the hospital anxiety and depression scale: ‘no butterflies in the desert’. PLoS One 8, e70975 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zubaran, C., Schumacher, M., Roxo, M. R. & Foresti, K. Screening tools for postpartum depression: validity and cultural dimensions. Afr. J. Psychiatry. https://doi.org/10.4314/ajpsy.v13i5.63101 (2011).

  • Nuevo, R. et al. Cross-cultural equivalence of the Beck depression inventory: a five-country analysis from the ODIN study. J. Affect. Disord. 114, 156–162 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Li, G., Li, B., Huang, L. & Hou, S. Automatic construction of a depression-domain lexicon based on microblogs: text mining study. JMIR Med. Inf. 8, e17650 (2020).

    Article 

    Google Scholar
     

  • Orabi, A. H., Buddhitha, P., Orabi, M. H. & Inkpen, D. Deep learning for depression detection of Twitter users. In Proc. Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic 88–97 (ACL Anthology, 2018).

  • Guntuku, S. C., Yaden, D. B., Kern, M. L., Ungar, L. H. & Eichstaedt, J. C. Detecting depression and mental illness on social media: an integrative review. Curr. Opin. Behav. Sci. 18, 43–49 (2017).

    Article 

    Google Scholar
     

  • Burdisso, S. G., Errecalde, M. & Montes-y-Gómez, M. A text classification framework for simple and effective early depression detection over social media streams. Expert Syst. Appl. 133, 182–197 (2019).

    Article 

    Google Scholar
     

  • Reece, A. G. et al. Forecasting the onset and course of mental illness with Twitter data. Sci. Rep. 7, 13006 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McClellan, C., Ali, M. M., Mutter, R., Kroutil, L. & Landwehr, J. Using social media to monitor mental health discussions—evidence from Twitter. J. Am. Med. Inform. Assoc. 24, 496–502 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Coppersmith, G., Leary, R., Crutchley, P. & Fine, A. Natural language processing of social media as screening for suicide risk. Biomed. Inform. Insights 10, 1178222618792860 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larsen, M. E. et al. We feel: mapping emotion on Twitter. IEEE J. Biomed. Health Inf. 19, 1246–1252 (2015).

    Article 

    Google Scholar
     

  • Chen, X., Sykora, M. D., Jackson, T. W. & Elayan, S. What about mood swings: identifying depression on Twitter with temporal measures of emotions. In: Companion Proceedings of the Web Conference 2018 1653–1660 (International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 2018). https://doi.org/10.1145/3184558.3191624.

  • Hasan, M., Rundensteiner, E. & Agu, E. Automatic emotion detection in text streams by analyzing Twitter data. Int. J. Data Sci. Anal. 7, 35–51 (2019).

    Article 

    Google Scholar
     

  • Reece, A. G. & Danforth, C. M. Instagram photos reveal predictive markers of depression. EPJ Data Sci. 6, 15 (2017).

    Article 

    Google Scholar
     

  • Andalibi, N., Ozturk, P. & Forte, A. Depression-related Imagery on Instagram. In Proc. 18th ACM Conference Companion on Computer Supported Cooperative Work & Social Computing 231–234 (Association for Computing Machinery, New York, 2015). https://doi.org/10.1145/2685553.2699014.

  • Jourard, S. M. Self-disclosure: an experimental analysis of the transparent self (Wiley Interscience, New York, 1971).

  • Cozby, P. C. Self-disclosure: a literature review. Psychol. Bull. 79, 73–91 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brohan, E. et al. Systematic review of beliefs, behaviours and influencing factors associated with disclosure of a mental health problem in the workplace. BMC Psychiatry 12, 11 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogel, D. L. & Wester, S. R. To seek help or not to seek help: the risks of self-disclosure. J. Couns. Psychol. 50, 351–361 (2003).

    Article 

    Google Scholar
     

  • Barglow, P. Self-disclosure in psychotherapy. Am. J. Psychother. 59, 83–99 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Pennebaker, J. W. & Seagal, J. D. Forming a story: the health benefits of narrative. J. Clin. Psychol. 55, 1243–1254 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edo-Osagie, O., De La Iglesia, B., Lake, I. & Edeghere, O. A scoping review of the use of Twitter for public health research. Comput. Biol. Med. 122, 103770 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ophir, Y., Asterhan, C. S. C. & Schwarz, B. B. Unfolding the notes from the walls: adolescents’ depression manifestations on Facebook. Comput. Hum. Behav. 72, 96–107 (2017).

    Article 

    Google Scholar
     

  • Seabrook, E. M., Kern, M. L., Fulcher, B. D. & Rickard, N. S. Predicting depression from language-based emotion dynamics: longitudinal analysis of facebook and twitter status updates. J. Med. Internet Res. 20, e168 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lachmar, E. M., Wittenborn, A. K., Bogen, K. W. & McCauley, H. L. # MyDepressionLooksLike: examining public discourse about depression on twitter. JMIR Ment. Health 4, e43 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hswen, Y., Naslund, J. A., Brownstein, J. S. & Hawkins, J. B. Online communication about depression and anxiety among twitter users with schizophrenia: preliminary findings to inform a digital phenotype using social media. Psychiatr. Q. 89, 569–580 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mowery, D. et al. Understanding depressive symptoms and psychosocial stressors on Twitter: a corpus-based study. J. Med. Internet Res. 19, e48 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ricard, B. J., Marsch, L. A., Crosier, B. & Hassanpour, S. Exploring the utility of community-generated social media content for detecting depression: an analytical study on Instagram. J. Med. Internet Res. 20, e11817 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berry, N. et al. # WhyWeTweetMH: understanding why people use Twitter to discuss mental health problems. J. Med. Internet Res. 19, e107 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cavazos-Rehg, P. A. et al. A content analysis of depression-related Tweets. Comput. Hum. Behav. 54, 351–357 (2016).

    Article 

    Google Scholar
     

  • O’Dea, B., Larsen, M. E., Batterham, P. J., Calear, A. L. & Christensen, H. A linguistic analysis of suicide-related Twitter posts. Crisis. J. Crisis. Interv. Suicide Prev. 38, 319–329 (2017).

    Article 

    Google Scholar
     

  • Mahoney, J. et al. Feeling alone among 317 million others: disclosures of loneliness on Twitter. Comput. Hum. Behav. 98, 20–30 (2019).

    Article 

    Google Scholar
     

  • Li, A., Jiao, D., Liu, X. & Zhu, T. A comparison of the psycholinguistic styles of schizophrenia-related stigma and depression-related stigma on social media: content analysis. J. Med. Internet Res. 22, e16470 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Choudhury, M., Gamon, M., Counts, S. & Horvitz, E. Predicting depression via social media. ICWSM 13, 1–10 (2013).


    Google Scholar
     

  • Chiong, R., Budhi, G. S., Dhakal, S. & Chiong, F. A textual-based featuring approach for depression detection using machine learning classifiers and social media texts. Comput. Biol. Med. 135, 104499 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Birnbaum, M. L., Ernala, S. K., Rizvi, A. F., De Choudhury, M. & Kane, J. M. A collaborative approach to identifying social media markers of schizophrenia by employing machine learning and clinical appraisals. J. Med. Internet Res. 19, e289 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lossio-Ventura, J. A. et al. Evaluation of clustering and topic modeling methods over health-related tweets and emails. Artif. Intell. Med. 117, 102096 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zogan, H., Razzak, I., Jameel, S. & Xu, G. Hierarchical convolutional attention network for depression detection on social media and its impact during pandemic. IEEE J. Biomed. Health Inform. https://doi.org/10.1109/JBHI.2023.3243249 (2023).

  • Kelley, S. W., Mhaonaigh, C. N., Burke, L., Whelan, R. & Gillan, C. M. Machine learning of language use on Twitter reveals weak and non-specific predictions. NPJ Digit Med. 5, 35 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oduntan, A. et al. ‘I Let Depression and Anxiety Drown Me…’: identifying factors associated with resilience based on journaling using machine learning and thematic analysis. IEEE J. Biomed. Health Inform. 26, 3397–3408 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Mangalik, S. et al. Robust language-based mental health assessments in time and space through social media. NPJ Digit Med. 7, 109 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farruque, N., Goebel, R., Sivapalan, S. & Zaïane, O. Deep temporal modelling of clinical depression through social media text. Nat. Lang. Process. J. 6, 100052 (2024).

    Article 

    Google Scholar
     

  • Cai, Y., Wang, H., Ye, H., Jin, Y. & Gao, W. Depression detection on online social network with multivariate time series feature of user depressive symptoms. Expert Syst. Appl. 217, 119538 (2023).

    Article 

    Google Scholar
     

  • Giuntini, F. T. et al. A review on recognizing depression in social networks: challenges and opportunities. J. Ambient Intell. Humaniz. Comput. https://doi.org/10.1007/s12652-020-01726-4 (2020).

  • Hasib, K. M. et al. Depression detection from social networks data based on machine learning and deep learning techniques: an interrogative survey. IEEE Trans. Comput. Soc. Syst. 10, 1568–1586 (2023).

    Article 

    Google Scholar
     

  • Coppersmith, G., Harman, C. & Dredze, M. Measuring post traumatic stress disorder in Twitter. In: Eighth International AAAI Conference on Weblogs and Social Media (AAAI, 2014).

  • Nadeem, M. Identifying depression on Twitter. Available at https://doi.org/10.48550/arXiv.1607.07384 (2016).

  • Leis, A., Ronzano, F., Mayer, M. A., Furlong, L. I. & Sanz, F. Detecting signs of depression in tweets in Spanish: behavioral and linguistic analysis. J. Med. Internet Res. 21, e14199. https://doi.org/10.2196/14199 (2019).

  • Nguyen, T. et al. Using linguistic and topic analysis to classify sub-groups of online depression communities. Multimed. Tools Appl. 76, 10653–10676 (2017).

    Article 

    Google Scholar
     

  • Gkotsis, G. et al. Characterisation of mental health conditions in social media using informed deep learning. Sci. Rep. https://doi.org/10.1038/srep45141 (2017).

  • Meng, Y., Speier, W., Ong, M. & Arnold, C. W. HCET: hierarchical clinical embedding with topic modeling on electronic health records for predicting future depression. IEEE J. Biomed. Health Inf. 25, 1265–1272 (2021).

    Article 

    Google Scholar
     

  • Meng, Y., Speier, W., Ong, M. K. & Arnold, C. W. Bidirectional representation learning from transformers using multimodal electronic health record data to predict depression. IEEE J. Biomed. Health Inf. 25, 3121–3129 (2021).

    Article 

    Google Scholar
     

  • Blei, D. M., Ng, A. Y. & Jordan, M. I. Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003).


    Google Scholar
     

  • Gallagher, R. J., Reing, K., Kale, D. & Ver Steeg, G. Anchored correlation explanation: topic modeling with minimal domain knowledge. Trans. Assoc. Comput. Linguist. 5, 529–542 (2017).

    Article 

    Google Scholar
     

  • Rizvi, R. F. et al. Analyzing social media data to understand consumer information needs on dietary supplements. Stud. Health Technol. Inform. 264, 323–327 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, S., Zhao, Y., Bian, J., Haynos, A. F. & Zhang, R. Exploring eating disorder topics on twitter: machine learning approach. JMIR Med Inf. 8, e18273 (2020).

    Article 

    Google Scholar
     

  • Shankar, K., Chandrasekaran, R., Jeripity Venkata, P. & Miketinas, D. Investigating the role of nutrition in enhancing immunity during the COVID-19 pandemic: twitter text-mining analysis. J. Med. Internet Res. 25, e47328 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandrasekaran, R., Konaraddi, K., Sharma, S. S. & Moustakas, E. Text-mining and video analytics of COVID-19 narratives shared by patients on YouTube. J. Med. Syst. 48, 21 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Wongkoblap, A., Vadillo, M. A. & Curcin, V. Researching mental health disorders in the era of social media: systematic review. J. Med. Internet Res. 19, e228 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, S., Klein, D. N. & O’Leary, K. D. The role of separation/divorce in relapse into and recovery from major depression. J. Soc. Pers. Relat. 24, 855–873 (2007).

    Article 

    Google Scholar
     

  • Breslau, J. et al. A multinational study of mental disorders, marriage, and divorce. Acta Psychiatr. Scand. 124, 474–486 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steel, Z. et al. Association of torture and other potentially traumatic events with mental health outcomes among populations exposed to mass conflict and displacement: a systematic review and meta-analysis. JAMA 302, 537–549 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaeth, P. A. C., Ramisetty-Mikler, S. & Caetano, R. Depression among couples in the United States in the context of intimate partner violence. J. Interpers. Violence 25, 771–790 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Kendler, K. S., Myers, J. & Zisook, S. Does bereavement-related major depression differ from major depression associated with other stressful life events? Am. J. Psychiatry 165, 1449–1455 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Staner, L. Comorbidity of insomnia and depression. Sleep. Med. Rev. 14, 35–46 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Bruti, G., Magnotti, M. C. & Iannetti, G. Migraine and depression: bidirectional co-morbidities? Neurol. Sci. 33, S107–S109 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Sheng, J., Liu, S., Wang, Y., Cui, R. & Zhang, X. The link between depression and chronic pain: neural mechanisms in the brain. Neural Plast. 2017, 9724371 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, A., Rief, W., Klaiberg, A. & Braehler, E. Validity of the brief patient health questionnaire mood scale (PHQ-9) in the general population. Gen. Hosp. Psychiatry 28, 71–77 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Ljung, M. Swearing: A Cross-Cultural Linguistic Study (Springer, 2010).

  • Stephens, R. & Umland, C. Swearing as a response to pain—effect of daily swearing frequency. J. Pain. 12, 1274–1281 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Robbins, M. L. et al. Naturalistically observed swearing, emotional support, and depressive symptoms in women coping with illness. Health Psychol. 30, 789–792 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez, A. J., Holleran, S. E. & Mehl, M. R. Reading between the lines: the lay assessment of subclinical depression from written self-descriptions. J. Pers. 78, 575–598 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Lu, Y., Pan, T. & Deng, S. What drives patients affected by depression to share in online depression communities? A social capital perspective. Healthcare 7, 133 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. Systematic review and meta-analysis of the effects of exercise on depression in adolescents. Child Adolesc. Psychiatry Ment. Health 16, 16 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, M. X. et al. Exercise interventions for the prevention of depression: a systematic review of meta-analyses. BMC Public Health 20, 1255 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y., Yan, D. & Yang, J. Effectiveness of yoga for major depressive disorder: a systematic review and meta-analysis. Front. Psychiatry 14, 1138205 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibson-Smith, D. et al. Association of food groups with depression and anxiety disorders. Eur. J. Nutr. 59, 767–778 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sharpley, C. et al. Pet ownership and symptoms of depression: A prospective study of older adults. J. Affect. Disord. 264, 35–39 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Pine, R., Fleming, T., McCallum, S. & Sutcliffe, K. The effects of casual videogames on anxiety, depression, stress, and low mood: a systematic review. Games Health J. https://doi.org/10.1089/g4h.2019.0132 (2020).

  • Russoniello, C. V., Fish, M. T. & O’Brien, K. The efficacy of playing videogames compared with antidepressants in reducing treatment-resistant symptoms of depression. Games Health J. 8, 332–338 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Hampton: Community Encouraged To Attend November Los Alamos County Health Council Meeting

    October 24, 2025

    Health Insurance vs. Nuclear Weapons

    October 23, 2025

    Health Care Coverage For Seniors Topic Of West Hartford Forum

    October 20, 2025

    Mental health & finance topic for women @Bromley conference

    October 17, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Latest Posts

    ‘World’s first’ Museum of Youth Culture to open in London · News ⟋ RA

    October 26, 2025

    PA Environment & Energy Articles & NewsClips By Topic

    October 26, 2025

    Two killed in Cameroon protests ahead of election results, opposition says | Elections News

    October 26, 2025

    A humming annoyance or jobs boom? Life next to 199 data centres in Virginia

    October 26, 2025
    News
    • Breaking News (5,002)
    • Business (312)
    • Career (4,242)
    • Climate (213)
    • Culture (4,210)
    • Education (4,425)
    • Finance (202)
    • Health (853)
    • Lifestyle (4,098)
    • Science (4,113)
    • Sports (311)
    • Tech (174)
    • Uncategorized (1)

    Subscribe to Updates

    Get the latest news from onlyfacts24.

    Follow Us
    • Facebook
    • Instagram
    • TikTok

    Subscribe to Updates

    Get the latest news from ONlyfacts24.

    News
    • Breaking News (5,002)
    • Business (312)
    • Career (4,242)
    • Climate (213)
    • Culture (4,210)
    • Education (4,425)
    • Finance (202)
    • Health (853)
    • Lifestyle (4,098)
    • Science (4,113)
    • Sports (311)
    • Tech (174)
    • Uncategorized (1)
    Facebook Instagram TikTok
    • About us
    • Contact us
    • Disclaimer
    • Privacy Policy
    • Terms and services
    © 2025 Designed by onlyfacts24

    Type above and press Enter to search. Press Esc to cancel.