Pirillo, A., Casula, M., Olmastroni, E., Norata, G. D. & Catapano, A. L. Global epidemiology of dyslipidaemias. Nat. Rev. Cardiol. 18, 689–700 (2021).
Joint Committee on the Chinese Guidelines for Lipid M. [Chinese guidelines for lipid management (2023)]. Zhonghua Xin Xue Guan Bing Za Zhi. 51, 221–255 (2023).
Hasheminasabgorji, E. & Jha J. C. Dyslipidemia, diabetes and atherosclerosis: role of inflammation and ROS-redox-sensitive factors. Biomedicines. 9, 1602 (2021).
Collaboration NCDRF Repositioning of the global epicentre of non-optimal cholesterol. Nature 582, 73–77 (2020).
Baik, I. Dietary and modifiable factors contributing to hyper-LDL-cholesterolemia prevalence in nationwide time series data and the implications for primary prevention strategies. Nutr. Res. Pract. 14, 62–69 (2020).
Jain, R. B. & Ducatman, A. Associations between smoking and lipid/lipoprotein concentrations among US adults aged >/=20 years. J Circ Biomark. 7, 1849454418779310 (2018).
Ye, X. F., Miao, C. Y., Zhang, W., Ji, L. N. & Wang, J. G. investigators A. Alcohol intake and dyslipidemia in male patients with hypertension and diabetes enrolled in a China multicenter registry. J. Clin. Hypertens.25, 183–190 (2023).
Zou, Q. et al. Longitudinal Association between physical activity, blood lipids, and risk of dyslipidemia among chinese adults: findings from the China Health and Nutrition Surveys in 2009 and 2015. Nutrients. 15, 341 (2023).
Norris, G. H. & Blesso, C. N. Dietary sphingolipids: potential for management of dyslipidemia and nonalcoholic fatty liver disease. Nutr. Rev. 75, 274–285 (2017).
Antinozzi, M. et al. Cigarette smoking and human gut microbiota in healthy adults: a systematic review. Biomedicines. 10, 510 (2022).
Torquati, L. et al. Effects of exercise intensity on gut microbiome composition and function in people with type 2 diabetes. Eur. J. Sport Sci. 23, 530–541 (2023).
Bjorkhaug, S. T. et al. Characterization of gut microbiota composition and functions in patients with chronic alcohol overconsumption. Gut Microbes 10, 663–675 (2019).
Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).
Kasubuchi, M., Hasegawa, S., Hiramatsu, T., Ichimura, A. & Kimura, I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7, 2839–2849 (2015).
Ross, F. C. et al. The interplay between diet and the gut microbiome: implications for health and disease. Nat. Rev. Microbiol. 22, 671–686 (2024).
Zhang, X. et al. Multi-trajectories of body mass index, waist circumference, gut microbiota, and incident dyslipidemia: a 27-year prospective study. Res. Sq. rs.3, 4251069 (2024).
Thomas, M. S. et al. Dietary influences on gut microbiota with a focus on metabolic syndrome. Metab. Syndr. Relat. Disord. 20, 429–439 (2022).
Lv, J. et al. Adherence to healthy lifestyle and cardiovascular diseases in the Chinese population. J. Am. Coll. Cardiol. 69, 1116–1125 (2017).
Nudelman, G., Kalish, Y. & Shiloh, S. The centrality of health behaviours: a network analytic approach. Br. J. Health Psychol. 24, 215–236 (2019).
Zhao, X. et al. China multi-ethnic cohort collaborative g. Cohort Profile: the China multi-ethnic cohort (CMEC) study. Int. J. Epidemiol. 50, 721–721l (2021).
Yang, S. et al. Development and validation of an age-sex-ethnicity-specific metabolic syndrome score in the Chinese adults. Nat. Commun. 14, 6988 (2023).
Ma, H. et al. Associations of residential physical activity development trajectory with carotid plaque. Prev. Med. 50, 4497–4502 (2023).
Guerra, R. M. & Pagliarini, D. J. Coenzyme Q biochemistry and biosynthesis. Trends Biochem. Sci. 48, 463–476 (2023).
Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805–821 (2015).
Liu, Y. et al. Machine learning framework for gut microbiome biomarkers discovery and modulation analysis in large-scale obese population. BMC Genomics 23, 850 (2022).
Chiu, C. M. et al. Systematic analysis of the association between gut flora and obesity through high-throughput sequencing and bioinformatics approaches. Biomed. Res. Int. 2014, 906168 (2014).
Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859–868 (2017).
Michels, N. et al. Human microbiome and metabolic health: an overview of systematic reviews. Obes. Rev. 23, e13409 (2022).
Li, C. et al. Gut microbiome and metabolome profiling in Framingham heart study reveals cholesterol-metabolizing bacteria. Cell 187, 1834–1852 e1819 (2024).
Folcik, V. A. & Cathcart, M. K. Predominance of esterified hydroperoxy-linoleic acid in human monocyte-oxidized LDL. J. Lipid Res. 35, 1570–1582 (1994).
Das, U. N. Arachidonic acid in health and disease with focus on hypertension and diabetes mellitus: a review. J. Adv. Res 11, 43–55 (2018).
Roman, R. J. P. -450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev. 82, 131–185 (2002).
Horrillo, R. et al. 5-lipoxygenase activating protein signals adipose tissue inflammation and lipid dysfunction in experimental obesity. J. Immunol. 184, 3978–3987 (2010).
Sacerdoti, D., Gatta, A. & McGiff, J. C. Role of cytochrome P450-dependent arachidonic acid metabolites in liver physiology and pathophysiology. Prostaglandins Other Lipid Mediat. 72, 51–71 (2003).
Li, S., Su, W., Zhang, X. Y. & Guan, Y. F. [Arachidonic acid metabolism in liver glucose and lipid homeostasis]. Sheng Li Xue Bao 73, 657–664 (2021).
Bennett, B. J. et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 17, 49–60 (2013).
Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).
Seldin, M. M. et al Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. J. Am. Heart Assoc. 5, e002767 (2016).
Li, X. et al. Effect of Lactobacillus plantarum HT121 on serum lipid profile, gut microbiota, and liver transcriptome and metabolomics in a high-cholesterol diet-induced hypercholesterolemia rat model. Nutrition 79-80, 110966 (2020).
Li, T. et al. Eight weeks of bifidobacterium lactis BL-99 supplementation improves lipid metabolism and sports performance through short-chain fatty acids in cross-country skiers: a preliminary study. Nutrients. 15, 4554 (2023).
Hibberd, A. A. et al. Probiotic or synbiotic alters the gut microbiota and metabolism in a randomised controlled trial of weight management in overweight adults. Benef. Microbes 10, 121–135 (2019).
Cai, J., Rimal, B., Jiang, C., Chiang, J. Y. L. & Patterson, A. D. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharm. Ther. 237, 108238 (2022).
Xu, W., Kong, Y., Zhang, T., Gong, Z. & Xiao, W. L-Theanine regulates lipid metabolism by modulating gut microbiota and bile acid metabolism. J. Sci. Food Agric. 103, 1283–1293 (2023).
Jie, L. et al. The mechanism of palmatine-mediated intestinal flora and host metabolism intervention in OA-OP comorbidity rats. Front. Med.10, 1153360 (2023).
Deng, K. et al. Comparison of fecal and blood metabolome reveals inconsistent associations of the gut microbiota with cardiometabolic diseases. Nat. Commun. 14, 571 (2023).
Bugajska, J., Berska, J., Wójcik, M. & Sztefko, K. Amino acid profile in overweight and obese prepubertal children – can simple biochemical tests help in the early prevention of associated comorbidities?. Front. Endocrinol.14, 1274011 (2023).
Kim, M. J., Sim, D. Y., Lee, H. M., Lee, H. J. & Kim S. H. Hypolipogenic Effect of Shikimic Acid Via Inhibition of MID1IP1 and Phosphorylation of AMPK/ACC. Int. J. Mol. Sci. 20, 582 (2019).
Askari, A. A. et al. Basal and inducible anti-inflammatory epoxygenase activity in endothelial cells. Biochem. Biophys. Res. Commun. 446, 633–637 (2014).
Crost, E. H., Coletto, E., Bell, A. & Juge, N. Ruminococcus gnavus: friend or foe for human health. FEMS Microbiol. Rev. 47, fuad014 (2023).
van Soest, A. P. M. et al. Associations between pro- and anti-inflammatory gastro-intestinal microbiota, diet, and cognitive functioning in dutch healthy older adults: the NU-AGE Study. Nutrients. 12, 3471 (2020).
Ma, E. et al. Long-term association between diet quality and characteristics of the gut microbiome in the multiethnic cohort study. Br. J. Nutr. 1–10 (2021).
Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294 (2018).
Chatterjee, B., Echchgadda I. & Seog Song C. Vitamin D receptor regulation of the steroid/bile acid sulfotransferase SULT2A1. In: Methods Enzymol. Academic Press, 165–191 (2005).
Chaudhari, S. N. et al. A microbial metabolite remodels the gut-liver axis following bariatric surgery. Cell Host Microbe 29, 408–424.e407 (2021).
Robben, J., Janssen, G., Merckx, R. & Eyssen, H. Formation of delta 2- and delta 3-cholenoic acids from bile acid 3-sulfates by a human intestinal Fusobacterium strain. Appl. Environ. Microbiol. 55, 2954–2959 (1989).
Antharam, V. C. et al. An integrated metabolomic and microbiome analysis identified specific gut microbiota associated with fecal cholesterol and coprostanol in clostridium difficile infection. PLoS ONE11, e0148824 (2016).
Louis, P., Young, P., Holtrop, G. & Flint, H. J. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ. Microbiol. 12, 304–314 (2010).
Gophna, U., Konikoff, T. & Nielsen, H. B. Oscillospira and related bacteria – from metagenomic species to metabolic features. Environ. Microbiol. 19, 835–841 (2017).
Parker, B. J., Wearsch, P. A., Veloo, A. C. M. & Rodriguez-Palacios, A. The genus alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front. Immunol. 11, 906 (2020).
Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019).
Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017).
DePhillips, C., Parikh, P. B. & Stevens, G. A. Dyslipidemia: current therapies and strategies to overcome barriers for use. J. Nurse Pract.17, 1167–1173 (2021).
Wang, L., Zhang, L., Zhang, Y. & Li, J. P. Impact of allogenic fecal microbiota transplantation (FMT) on lipid parameters in patients with metabolic syndrome (MetS): a meta-analysis. Eur. Heart J. 45, ehae666.3361 (2024).
Mederle, A. L. et al. Impact of gut microbiome interventions on glucose and lipid metabolism in metabolic diseases: a systematic review and meta-analysis. Life 14, 1485 (2024).
Qu, Q. et al. Population-level gut microbiome and its associations with environmental factors and metabolic disorders in Southwest China. NPJ Biofilms Microbiomes 11, 24 (2025).
Zhu, N. et al. Prevalence of ‘healthy lifestyle’ in Chinese adults. Chin. J. Epidemiol. 40, 136–141 (2019).
World Health Organization. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World. https://www.who.int/publications/i/item/9789241514187 (2018).
Du, H. et al. Physical activity and sedentary leisure time and their associations with BMI, waist circumference, and percentage body fat in 0.5 million adults: the China Kadoorie Biobank study. Am. J. Clin. Nutr. 97, 487–496 (2013).
Yu, W. et al. Rural-urban disparities in the associations of residential greenness with diabetes and prediabetes among adults in southeastern China. Sci. Total Environ. 860, 160492 (2023).
Ainsworth, B. E. et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med. Sci. Sports Exerc. 43, 1575–1581 (2011).
Craig, C. L. et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 35, 1381–1395 (2003).
Eckel, R. H. et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63, 2960–2984 (2014).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–U354 (2012).
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).
Li, D. H., Liu, C. M., Luo, R. B., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
Want, E. J. et al. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc. 8, 17–32 (2013).
Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).
Navarro-Reig, M., Jaumot, J., García-Reiriz, A. & Tauler, R. Evaluation of changes induced in rice metabolome by Cd and Cu exposure using LC-MS with XCMS and MCR-ALS data analysis strategies. Anal. Bioanal. Chem. 407, 8835–8847 (2015).
Wishart, D. S. et al. HMDB: the human metabolome database. Nucleic Acids Res. 35, D521–D526 (2007).
Sud, M. et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 35, D527–D532 (2007).
Ogata, H. et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27, 29–34 (1999).
Garralda-Del-Villar, M. et al Healthy lifestyle and incidence of metabolic syndrome in the SUN cohort. Nutrients. 11, 65 (2018).
Sun, Q. et al. Healthy lifestyle and life expectancy at age 30 years in the Chinese population: an observational study. Lancet Public Health 7, e994–e1004 (2022).
Nearing, J. T. et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 13, 342 (2022).
Lu, J. et al. Chinese gut microbiota and its associations with staple food type, ethnicity, and urbanization. NPJ Biofilms Microbiomes 7, 71 (2021).
Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 17, e1009442 (2021).
Jeong, S. et al. Cognitive function associated with gut microbial abundance in sucrose and s-adenosyl-l-methionine (SAMe) metabolic pathways. J. Alzheimers Dis. 87, 1115–1130 (2022).
Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).
Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).
Ren, Y. et al. Lifestyle patterns influence the composition of the gut microbiome in a healthy Chinese population. Sci. Rep. 13, 14425 (2023).